grid_iter/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
#![no_std]
//! Grids for Iterators
//!
//! Provides a two dimensional abstraction over Iterators.
//! Intended to be simple, flexible and ideomatic.
//! ```rust
//! use grid_iter::IntoGridIter;
//!
//! let file:&str = "1,2,3,4,5\n6,7,8,9,10\n11,12,13,14,15";
//! let mut store = file.lines()
//! .flat_map(|line|line.split(',').map(|s|s.parse().unwrap()))
//! .collect::<Vec<_>>();
//! store.iter_mut().into_grid_iter(5).iter_col(3).for_each(|i| *i= 0);
//! store.iter_mut().into_grid_iter(5).iter_row(1).for_each(|i| *i+= 1);
//! let borrowing_grid = store.iter().into_grid_iter(5);
//! drop(borrowing_grid);
//! let capturing_grid = store.iter().into_grid_iter(5);
//! println!("{:?}", capturing_grid);
//! ```
use core::iter::{Skip, StepBy, Take, repeat};
///The Grid struct wraps an Iterator and provies two dimensional access over its contents.
#[derive(Copy, Debug)]
pub struct GridIter<I: Iterator<Item = T>, T> {
inner: I,
columns: usize,
rows: Option<usize>,
}
//M anually implement because T does not need to be Clone
impl<I: Iterator<Item = T> + Clone, T> Clone for GridIter<I, T> {
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
columns: self.columns.clone(),
rows: self.rows.clone(),
}
}
}
impl<I: Iterator<Item = T> + Clone, T: core::fmt::Display> core::fmt::Display for GridIter<I, T> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.clone().iter_rows().for_each(|col| {
col.for_each(|ch| write!(f, "{}\t", ch).unwrap());
write!(f, "\n").unwrap();
});
Ok(())
}
}
/// ToGrid ist implemented for all iterators.
/// Provides the grid function to wrap iterators with the Grid struct which contains the main functionality.
pub trait IntoGridIter<I: Iterator<Item = T>, T> {
fn into_grid_iter(self, columns: usize) -> GridIter<I, T>;
}
impl<I: Iterator<Item = T>, T> IntoGridIter<I, T> for I {
fn into_grid_iter(self, columns: usize) -> GridIter<I, T> {
GridIter {
inner: self,
columns,
rows: None,
}
}
}
pub type Get<T> = Take<Skip<T>>;
pub type RowIter<T> = Take<Skip<T>>;
pub type ColIter<T> = StepBy<Skip<T>>;
pub type DiagBwdIter<T> = StepBy<Skip<T>>;
pub type DiagFwdIter<T> = Take<StepBy<Skip<T>>>;
impl<I: Iterator<Item = T>, T> GridIter<I, T> {
///```rust
///
/// // . x .
/// // . x .
/// // . x .
///
/// use grid_iter::IntoGridIter;
/// (0..25).into_grid_iter(5)
/// .iter_col(3)
/// .zip([3,8,13,18,23])
/// .for_each(|(l, r)| assert!(l == r));
///```
pub fn iter_col(self, col: usize) -> ColIter<I> {
assert!(col < self.columns);
self.inner.into_iter().skip(col).step_by(self.columns)
}
///```rust
///
/// // . . .
/// // x x x
/// // . . .
///
/// use grid_iter::IntoGridIter;
/// (0..25).into_grid_iter(5)
/// .iter_row(3)
/// .zip(15..20)
/// .for_each(|(l, r)| assert!(l == r));
///```
pub fn iter_row(self, row: usize) -> RowIter<I> {
self.inner.skip(row * self.columns).take(self.columns)
}
///```rust
///
/// // . . .
/// // . x .
/// // . . .
///
/// use grid_iter::IntoGridIter;
/// assert!((0..25).into_grid_iter(5)
/// .get(2,2)==Some(12))
///```
pub fn get(self, col: usize, row: usize) -> Option<<I as IntoIterator>::Item> {
self.inner
.skip(index_to_flat(self.columns, col, row))
.take(1)
.next()
}
pub fn position<P: FnMut(I::Item) -> bool>(mut self, pred: P) -> Option<(usize, usize)> {
self.inner
.position(pred)
.map(|flat| index_from_flat(self.columns, flat))
}
///```rust
///
/// // . . 1
/// // . 2 .
/// // 3 . .
///
/// use grid_iter::IntoGridIter;
/// (0..25).into_grid_iter(5)
/// .iter_diag_fwd(0,1)
/// .zip([1,5])
/// .for_each(|(l, r)| assert!(l == r));
/// (0..25).into_grid_iter(5)
/// .iter_diag_fwd(3,2)
/// .zip([9,13,17,21])
/// .for_each(|(l, r)| assert!(l == r));
/// (0..25).into_grid_iter(5)
/// .iter_diag_fwd(1,0)
/// .zip([1,5])
/// .for_each(|(l, r)| assert!(l == r));
///```
pub fn iter_diag_fwd(self, col: usize, row: usize) -> DiagFwdIter<I> {
let col_max = self.columns - 1;
let (skip, take) = if col + row > self.columns - 1 {
// lower right part
(
index_to_flat(self.columns, col_max, row - (col_max - col)),
self.columns,
)
} else {
// upper left part
(index_to_flat(self.columns, row + col, 0), row + col + 1)
};
self.inner.skip(skip).step_by(col_max).take(take)
}
///```rust
///
/// // x . .
/// // . x .
/// // . . x
///
/// use grid_iter::IntoGridIter;
/// (0..25).into_grid_iter(5)
/// .iter_diag_bwd(1,2)
/// .zip([5,11,17,23])
/// .for_each(|(l, r)| assert!(l == r));
/// (0..25).into_grid_iter(5)
/// .iter_diag_bwd(4,2)
/// .zip([2,8,14])
/// .for_each(|(l, r)| assert!(l == r));
///```
pub fn iter_diag_bwd(self, col: usize, row: usize) -> DiagBwdIter<I> {
let diff = col.abs_diff(row);
let skip = if col > row {
//topright
index_to_flat(self.columns, diff, 0)
} else {
// botleft
index_to_flat(self.columns, 0, diff)
};
self.inner.skip(skip).step_by(self.columns + 1)
}
}
impl<I: Iterator<Item = T> + Clone, T> GridIter<I, T> {
/// calculates the rows and tries to cache them
/// for performance reasons you should use this function before using any other that needs the row count
fn calc_rows(&mut self) -> usize {
if let Some(rows) = self.rows {
rows
} else {
assert!(self.columns != 0);
let rows = self.clone().inner.count().div_ceil(self.columns);
self.rows = Some(rows);
rows
}
}
pub fn iter_rows(mut self) -> impl Iterator<Item = RowIter<I>> {
let rows = self.calc_rows();
repeat(self)
.enumerate()
.take(rows)
.map(|(r, s)| s.iter_row(r))
}
pub fn iter_cols(self) -> impl Iterator<Item = ColIter<I>> {
let columns = self.columns;
repeat(self)
.enumerate()
.take(columns)
.map(|(c, s)| s.iter_col(c))
}
pub fn iter_diags_bwd(self) -> impl Iterator<Item = DiagBwdIter<I>> {
(0..self.columns)
.zip(repeat(self.clone()))
.map(|(c, s)| s.iter_diag_bwd(c, 0))
.chain(
(self.columns..)
.zip(repeat(self))
.map(|(r, s)| s.iter_diag_bwd(0, r)),
)
}
///```rust
///
/// use grid_iter::IntoGridIter;
/// (0..25).into_grid_iter(5)
/// .iter_diags_fwd()
/// .flatten()
/// .sum()
/// .eq(&(0..25).sum())
///```
pub fn iter_diags_fwd(self) -> impl Iterator<Item = DiagFwdIter<I>> {
(0..self.columns)
.rev()
.zip(repeat(self.clone()))
.map(|(c, s)| s.iter_diag_fwd(c, 0))
.chain((1..).zip(repeat(self)).map(|(r, s)| s.iter_diag_fwd(0, r)))
}
}
fn index_from_flat(gridcolumns: usize, flat: usize) -> (usize, usize) {
assert!(gridcolumns != 0, "Columns set to 0! Cant calculate index");
(flat % gridcolumns, flat / gridcolumns)
}
fn index_to_flat(gridcolumns: usize, col: usize, row: usize) -> usize {
gridcolumns * row + col
}
// #[cfg(test)]
// mod tests {
// use super::IntoGridIter;
// #[test]
// fn test_get() {}
// }