1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
use {
    grep_matcher::{
        ByteSet, Captures, LineMatchKind, LineTerminator, Match, Matcher,
        NoError,
    },
    regex_automata::{
        meta::Regex, util::captures::Captures as AutomataCaptures, Input,
        PatternID,
    },
};

use crate::{config::Config, error::Error, literal::InnerLiterals};

/// A builder for constructing a `Matcher` using regular expressions.
///
/// This builder re-exports many of the same options found on the regex crate's
/// builder, in addition to a few other options such as smart case, word
/// matching and the ability to set a line terminator which may enable certain
/// types of optimizations.
///
/// The syntax supported is documented as part of the regex crate:
/// <https://docs.rs/regex/#syntax>.
#[derive(Clone, Debug)]
pub struct RegexMatcherBuilder {
    config: Config,
}

impl Default for RegexMatcherBuilder {
    fn default() -> RegexMatcherBuilder {
        RegexMatcherBuilder::new()
    }
}

impl RegexMatcherBuilder {
    /// Create a new builder for configuring a regex matcher.
    pub fn new() -> RegexMatcherBuilder {
        RegexMatcherBuilder { config: Config::default() }
    }

    /// Build a new matcher using the current configuration for the provided
    /// pattern.
    ///
    /// The syntax supported is documented as part of the regex crate:
    /// <https://docs.rs/regex/#syntax>.
    pub fn build(&self, pattern: &str) -> Result<RegexMatcher, Error> {
        self.build_many(&[pattern])
    }

    /// Build a new matcher using the current configuration for the provided
    /// patterns. The resulting matcher behaves as if all of the patterns
    /// given are joined together into a single alternation. That is, it
    /// reports matches where at least one of the given patterns matches.
    pub fn build_many<P: AsRef<str>>(
        &self,
        patterns: &[P],
    ) -> Result<RegexMatcher, Error> {
        let mut chir = self.config.build_many(patterns)?;
        // 'whole_line' is a strict subset of 'word', so when it is enabled,
        // we don't need to both with any specific to word matching.
        if chir.config().whole_line {
            chir = chir.into_whole_line();
        } else if chir.config().word {
            chir = chir.into_word();
        }
        let regex = chir.to_regex()?;
        log::trace!("final regex: {:?}", chir.hir().to_string());

        let non_matching_bytes = chir.non_matching_bytes();
        // If we can pick out some literals from the regex, then we might be
        // able to build a faster regex that quickly identifies candidate
        // matching lines. The regex engine will do what it can on its own, but
        // we can specifically do a little more when a line terminator is set.
        // For example, for a regex like `\w+foo\w+`, we can look for `foo`,
        // and when a match is found, look for the line containing `foo` and
        // then run the original regex on only that line. (In this case, the
        // regex engine is likely to handle this case for us since it's so
        // simple, but the idea applies.)
        let fast_line_regex = InnerLiterals::new(&chir, &regex).one_regex()?;

        // We override the line terminator in case the configured HIR doesn't
        // support it.
        let mut config = self.config.clone();
        config.line_terminator = chir.line_terminator();
        Ok(RegexMatcher { config, regex, fast_line_regex, non_matching_bytes })
    }

    /// Build a new matcher from a plain alternation of literals.
    ///
    /// Depending on the configuration set by the builder, this may be able to
    /// build a matcher substantially faster than by joining the patterns with
    /// a `|` and calling `build`.
    pub fn build_literals<B: AsRef<str>>(
        &self,
        literals: &[B],
    ) -> Result<RegexMatcher, Error> {
        self.build_many(literals)
    }

    /// Set the value for the case insensitive (`i`) flag.
    ///
    /// When enabled, letters in the pattern will match both upper case and
    /// lower case variants.
    pub fn case_insensitive(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.case_insensitive = yes;
        self
    }

    /// Whether to enable "smart case" or not.
    ///
    /// When smart case is enabled, the builder will automatically enable
    /// case insensitive matching based on how the pattern is written. Namely,
    /// case insensitive mode is enabled when both of the following things
    /// are true:
    ///
    /// 1. The pattern contains at least one literal character. For example,
    ///    `a\w` contains a literal (`a`) but `\w` does not.
    /// 2. Of the literals in the pattern, none of them are considered to be
    ///    uppercase according to Unicode. For example, `foo\pL` has no
    ///    uppercase literals but `Foo\pL` does.
    pub fn case_smart(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.case_smart = yes;
        self
    }

    /// Set the value for the multi-line matching (`m`) flag.
    ///
    /// When enabled, `^` matches the beginning of lines and `$` matches the
    /// end of lines.
    ///
    /// By default, they match beginning/end of the input.
    pub fn multi_line(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.multi_line = yes;
        self
    }

    /// Set the value for the any character (`s`) flag, where in `.` matches
    /// anything when `s` is set and matches anything except for new line when
    /// it is not set (the default).
    ///
    /// N.B. "matches anything" means "any byte" when Unicode is disabled and
    /// means "any valid UTF-8 encoding of any Unicode scalar value" when
    /// Unicode is enabled.
    pub fn dot_matches_new_line(
        &mut self,
        yes: bool,
    ) -> &mut RegexMatcherBuilder {
        self.config.dot_matches_new_line = yes;
        self
    }

    /// Set the value for the greedy swap (`U`) flag.
    ///
    /// When enabled, a pattern like `a*` is lazy (tries to find shortest
    /// match) and `a*?` is greedy (tries to find longest match).
    ///
    /// By default, `a*` is greedy and `a*?` is lazy.
    pub fn swap_greed(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.swap_greed = yes;
        self
    }

    /// Set the value for the ignore whitespace (`x`) flag.
    ///
    /// When enabled, whitespace such as new lines and spaces will be ignored
    /// between expressions of the pattern, and `#` can be used to start a
    /// comment until the next new line.
    pub fn ignore_whitespace(
        &mut self,
        yes: bool,
    ) -> &mut RegexMatcherBuilder {
        self.config.ignore_whitespace = yes;
        self
    }

    /// Set the value for the Unicode (`u`) flag.
    ///
    /// Enabled by default. When disabled, character classes such as `\w` only
    /// match ASCII word characters instead of all Unicode word characters.
    pub fn unicode(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.unicode = yes;
        self
    }

    /// Whether to support octal syntax or not.
    ///
    /// Octal syntax is a little-known way of uttering Unicode codepoints in
    /// a regular expression. For example, `a`, `\x61`, `\u0061` and
    /// `\141` are all equivalent regular expressions, where the last example
    /// shows octal syntax.
    ///
    /// While supporting octal syntax isn't in and of itself a problem, it does
    /// make good error messages harder. That is, in PCRE based regex engines,
    /// syntax like `\0` invokes a backreference, which is explicitly
    /// unsupported in Rust's regex engine. However, many users expect it to
    /// be supported. Therefore, when octal support is disabled, the error
    /// message will explicitly mention that backreferences aren't supported.
    ///
    /// Octal syntax is disabled by default.
    pub fn octal(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.octal = yes;
        self
    }

    /// Set the approximate size limit of the compiled regular expression.
    ///
    /// This roughly corresponds to the number of bytes occupied by a single
    /// compiled program. If the program exceeds this number, then a
    /// compilation error is returned.
    pub fn size_limit(&mut self, bytes: usize) -> &mut RegexMatcherBuilder {
        self.config.size_limit = bytes;
        self
    }

    /// Set the approximate size of the cache used by the DFA.
    ///
    /// This roughly corresponds to the number of bytes that the DFA will
    /// use while searching.
    ///
    /// Note that this is a *per thread* limit. There is no way to set a global
    /// limit. In particular, if a regex is used from multiple threads
    /// simultaneously, then each thread may use up to the number of bytes
    /// specified here.
    pub fn dfa_size_limit(
        &mut self,
        bytes: usize,
    ) -> &mut RegexMatcherBuilder {
        self.config.dfa_size_limit = bytes;
        self
    }

    /// Set the nesting limit for this parser.
    ///
    /// The nesting limit controls how deep the abstract syntax tree is allowed
    /// to be. If the AST exceeds the given limit (e.g., with too many nested
    /// groups), then an error is returned by the parser.
    ///
    /// The purpose of this limit is to act as a heuristic to prevent stack
    /// overflow for consumers that do structural induction on an `Ast` using
    /// explicit recursion. While this crate never does this (instead using
    /// constant stack space and moving the call stack to the heap), other
    /// crates may.
    ///
    /// This limit is not checked until the entire Ast is parsed. Therefore,
    /// if callers want to put a limit on the amount of heap space used, then
    /// they should impose a limit on the length, in bytes, of the concrete
    /// pattern string. In particular, this is viable since this parser
    /// implementation will limit itself to heap space proportional to the
    /// length of the pattern string.
    ///
    /// Note that a nest limit of `0` will return a nest limit error for most
    /// patterns but not all. For example, a nest limit of `0` permits `a` but
    /// not `ab`, since `ab` requires a concatenation, which results in a nest
    /// depth of `1`. In general, a nest limit is not something that manifests
    /// in an obvious way in the concrete syntax, therefore, it should not be
    /// used in a granular way.
    pub fn nest_limit(&mut self, limit: u32) -> &mut RegexMatcherBuilder {
        self.config.nest_limit = limit;
        self
    }

    /// Set an ASCII line terminator for the matcher.
    ///
    /// The purpose of setting a line terminator is to enable a certain class
    /// of optimizations that can make line oriented searching faster. Namely,
    /// when a line terminator is enabled, then the builder will guarantee that
    /// the resulting matcher will never be capable of producing a match that
    /// contains the line terminator. Because of this guarantee, users of the
    /// resulting matcher do not need to slowly execute a search line by line
    /// for line oriented search.
    ///
    /// If the aforementioned guarantee about not matching a line terminator
    /// cannot be made because of how the pattern was written, then the builder
    /// will return an error when attempting to construct the matcher. For
    /// example, the pattern `a\sb` will be transformed such that it can never
    /// match `a\nb` (when `\n` is the line terminator), but the pattern `a\nb`
    /// will result in an error since the `\n` cannot be easily removed without
    /// changing the fundamental intent of the pattern.
    ///
    /// If the given line terminator isn't an ASCII byte (`<=127`), then the
    /// builder will return an error when constructing the matcher.
    pub fn line_terminator(
        &mut self,
        line_term: Option<u8>,
    ) -> &mut RegexMatcherBuilder {
        self.config.line_terminator = line_term.map(LineTerminator::byte);
        self
    }

    /// Ban a byte from occurring in a regular expression pattern.
    ///
    /// If this byte is found in the regex pattern, then an error will be
    /// returned at construction time.
    ///
    /// This is useful when binary detection is enabled. Callers will likely
    /// want to ban the same byte that is used to detect binary data, i.e.,
    /// the NUL byte. The reason for this is that when binary detection is
    /// enabled, it's impossible to match a NUL byte because binary detection
    /// will either quit when one is found, or will convert NUL bytes to line
    /// terminators to avoid exorbitant heap usage.
    pub fn ban_byte(&mut self, byte: Option<u8>) -> &mut RegexMatcherBuilder {
        self.config.ban = byte;
        self
    }

    /// Set the line terminator to `\r\n` and enable CRLF matching for `$` in
    /// regex patterns.
    ///
    /// This method sets two distinct settings:
    ///
    /// 1. It causes the line terminator for the matcher to be `\r\n`. Namely,
    ///    this prevents the matcher from ever producing a match that contains
    ///    a `\r` or `\n`.
    /// 2. It enables CRLF mode for `^` and `$`. This means that line anchors
    ///    will treat both `\r` and `\n` as line terminators, but will never
    ///    match between a `\r` and `\n`.
    ///
    /// Note that if you do not wish to set the line terminator but would
    /// still like `$` to match `\r\n` line terminators, then it is valid to
    /// call `crlf(true)` followed by `line_terminator(None)`. Ordering is
    /// important, since `crlf` sets the line terminator, but `line_terminator`
    /// does not touch the `crlf` setting.
    pub fn crlf(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        if yes {
            self.config.line_terminator = Some(LineTerminator::crlf());
        } else {
            self.config.line_terminator = None;
        }
        self.config.crlf = yes;
        self
    }

    /// Require that all matches occur on word boundaries.
    ///
    /// Enabling this option is subtly different than putting `\b` assertions
    /// on both sides of your pattern. In particular, a `\b` assertion requires
    /// that one side of it match a word character while the other match a
    /// non-word character. This option, in contrast, merely requires that
    /// one side match a non-word character.
    ///
    /// For example, `\b-2\b` will not match `foo -2 bar` since `-` is not a
    /// word character. However, `-2` with this `word` option enabled will
    /// match the `-2` in `foo -2 bar`.
    pub fn word(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.word = yes;
        self
    }

    /// Whether the patterns should be treated as literal strings or not. When
    /// this is active, all characters, including ones that would normally be
    /// special regex meta characters, are matched literally.
    pub fn fixed_strings(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.fixed_strings = yes;
        self
    }

    /// Whether each pattern should match the entire line or not. This is
    /// equivalent to surrounding the pattern with `(?m:^)` and `(?m:$)`.
    pub fn whole_line(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.whole_line = yes;
        self
    }
}

/// An implementation of the `Matcher` trait using Rust's standard regex
/// library.
#[derive(Clone, Debug)]
pub struct RegexMatcher {
    /// The configuration specified by the caller.
    config: Config,
    /// The regular expression compiled from the pattern provided by the
    /// caller.
    regex: Regex,
    /// A regex that never reports false negatives but may report false
    /// positives that is believed to be capable of being matched more quickly
    /// than `regex`. Typically, this is a single literal or an alternation
    /// of literals.
    fast_line_regex: Option<Regex>,
    /// A set of bytes that will never appear in a match.
    non_matching_bytes: ByteSet,
}

impl RegexMatcher {
    /// Create a new matcher from the given pattern using the default
    /// configuration.
    pub fn new(pattern: &str) -> Result<RegexMatcher, Error> {
        RegexMatcherBuilder::new().build(pattern)
    }

    /// Create a new matcher from the given pattern using the default
    /// configuration, but matches lines terminated by `\n`.
    ///
    /// This is meant to be a convenience constructor for
    /// using a `RegexMatcherBuilder` and setting its
    /// [`line_terminator`](RegexMatcherBuilder::method.line_terminator) to
    /// `\n`. The purpose of using this constructor is to permit special
    /// optimizations that help speed up line oriented search. These types of
    /// optimizations are only appropriate when matches span no more than one
    /// line. For this reason, this constructor will return an error if the
    /// given pattern contains a literal `\n`. Other uses of `\n` (such as in
    /// `\s`) are removed transparently.
    pub fn new_line_matcher(pattern: &str) -> Result<RegexMatcher, Error> {
        RegexMatcherBuilder::new().line_terminator(Some(b'\n')).build(pattern)
    }
}

// This implementation just dispatches on the internal matcher impl except
// for the line terminator optimization, which is possibly executed via
// `fast_line_regex`.
impl Matcher for RegexMatcher {
    type Captures = RegexCaptures;
    type Error = NoError;

    #[inline]
    fn find_at(
        &self,
        haystack: &[u8],
        at: usize,
    ) -> Result<Option<Match>, NoError> {
        let input = Input::new(haystack).span(at..haystack.len());
        Ok(self.regex.find(input).map(|m| Match::new(m.start(), m.end())))
    }

    #[inline]
    fn new_captures(&self) -> Result<RegexCaptures, NoError> {
        Ok(RegexCaptures::new(self.regex.create_captures()))
    }

    #[inline]
    fn capture_count(&self) -> usize {
        self.regex.captures_len()
    }

    #[inline]
    fn capture_index(&self, name: &str) -> Option<usize> {
        self.regex.group_info().to_index(PatternID::ZERO, name)
    }

    #[inline]
    fn try_find_iter<F, E>(
        &self,
        haystack: &[u8],
        mut matched: F,
    ) -> Result<Result<(), E>, NoError>
    where
        F: FnMut(Match) -> Result<bool, E>,
    {
        for m in self.regex.find_iter(haystack) {
            match matched(Match::new(m.start(), m.end())) {
                Ok(true) => continue,
                Ok(false) => return Ok(Ok(())),
                Err(err) => return Ok(Err(err)),
            }
        }
        Ok(Ok(()))
    }

    #[inline]
    fn captures_at(
        &self,
        haystack: &[u8],
        at: usize,
        caps: &mut RegexCaptures,
    ) -> Result<bool, NoError> {
        let input = Input::new(haystack).span(at..haystack.len());
        let caps = caps.captures_mut();
        self.regex.search_captures(&input, caps);
        Ok(caps.is_match())
    }

    #[inline]
    fn shortest_match_at(
        &self,
        haystack: &[u8],
        at: usize,
    ) -> Result<Option<usize>, NoError> {
        let input = Input::new(haystack).span(at..haystack.len());
        Ok(self.regex.search_half(&input).map(|hm| hm.offset()))
    }

    #[inline]
    fn non_matching_bytes(&self) -> Option<&ByteSet> {
        Some(&self.non_matching_bytes)
    }

    #[inline]
    fn line_terminator(&self) -> Option<LineTerminator> {
        self.config.line_terminator
    }

    #[inline]
    fn find_candidate_line(
        &self,
        haystack: &[u8],
    ) -> Result<Option<LineMatchKind>, NoError> {
        Ok(match self.fast_line_regex {
            Some(ref regex) => {
                let input = Input::new(haystack);
                regex
                    .search_half(&input)
                    .map(|hm| LineMatchKind::Candidate(hm.offset()))
            }
            None => {
                self.shortest_match(haystack)?.map(LineMatchKind::Confirmed)
            }
        })
    }
}

/// Represents the match offsets of each capturing group in a match.
///
/// The first, or `0`th capture group, always corresponds to the entire match
/// and is guaranteed to be present when a match occurs. The next capture
/// group, at index `1`, corresponds to the first capturing group in the regex,
/// ordered by the position at which the left opening parenthesis occurs.
///
/// Note that not all capturing groups are guaranteed to be present in a match.
/// For example, in the regex, `(?P<foo>\w)|(?P<bar>\W)`, only one of `foo`
/// or `bar` will ever be set in any given match.
///
/// In order to access a capture group by name, you'll need to first find the
/// index of the group using the corresponding matcher's `capture_index`
/// method, and then use that index with `RegexCaptures::get`.
#[derive(Clone, Debug)]
pub struct RegexCaptures {
    /// Where the captures are stored.
    caps: AutomataCaptures,
}

impl Captures for RegexCaptures {
    #[inline]
    fn len(&self) -> usize {
        self.caps.group_info().all_group_len()
    }

    #[inline]
    fn get(&self, i: usize) -> Option<Match> {
        self.caps.get_group(i).map(|sp| Match::new(sp.start, sp.end))
    }
}

impl RegexCaptures {
    #[inline]
    pub(crate) fn new(caps: AutomataCaptures) -> RegexCaptures {
        RegexCaptures { caps }
    }

    #[inline]
    pub(crate) fn captures_mut(&mut self) -> &mut AutomataCaptures {
        &mut self.caps
    }
}

#[cfg(test)]
mod tests {
    use grep_matcher::{LineMatchKind, Matcher};

    use super::*;

    // Test that enabling word matches does the right thing and demonstrate
    // the difference between it and surrounding the regex in `\b`.
    #[test]
    fn word() {
        let matcher =
            RegexMatcherBuilder::new().word(true).build(r"-2").unwrap();
        assert!(matcher.is_match(b"abc -2 foo").unwrap());

        let matcher =
            RegexMatcherBuilder::new().word(false).build(r"\b-2\b").unwrap();
        assert!(!matcher.is_match(b"abc -2 foo").unwrap());
    }

    // Test that enabling a line terminator prevents it from matching through
    // said line terminator.
    #[test]
    fn line_terminator() {
        // This works, because there's no line terminator specified.
        let matcher = RegexMatcherBuilder::new().build(r"abc\sxyz").unwrap();
        assert!(matcher.is_match(b"abc\nxyz").unwrap());

        // This doesn't.
        let matcher = RegexMatcherBuilder::new()
            .line_terminator(Some(b'\n'))
            .build(r"abc\sxyz")
            .unwrap();
        assert!(!matcher.is_match(b"abc\nxyz").unwrap());
    }

    // Ensure that the builder returns an error if a line terminator is set
    // and the regex could not be modified to remove a line terminator.
    #[test]
    fn line_terminator_error() {
        assert!(RegexMatcherBuilder::new()
            .line_terminator(Some(b'\n'))
            .build(r"a\nz")
            .is_err())
    }

    // Test that enabling CRLF permits `$` to match at the end of a line.
    #[test]
    fn line_terminator_crlf() {
        // Test normal use of `$` with a `\n` line terminator.
        let matcher = RegexMatcherBuilder::new()
            .multi_line(true)
            .build(r"abc$")
            .unwrap();
        assert!(matcher.is_match(b"abc\n").unwrap());

        // Test that `$` doesn't match at `\r\n` boundary normally.
        let matcher = RegexMatcherBuilder::new()
            .multi_line(true)
            .build(r"abc$")
            .unwrap();
        assert!(!matcher.is_match(b"abc\r\n").unwrap());

        // Now check the CRLF handling.
        let matcher = RegexMatcherBuilder::new()
            .multi_line(true)
            .crlf(true)
            .build(r"abc$")
            .unwrap();
        assert!(matcher.is_match(b"abc\r\n").unwrap());
    }

    // Test that smart case works.
    #[test]
    fn case_smart() {
        let matcher =
            RegexMatcherBuilder::new().case_smart(true).build(r"abc").unwrap();
        assert!(matcher.is_match(b"ABC").unwrap());

        let matcher =
            RegexMatcherBuilder::new().case_smart(true).build(r"aBc").unwrap();
        assert!(!matcher.is_match(b"ABC").unwrap());
    }

    // Test that finding candidate lines works as expected.
    // FIXME: Re-enable this test once inner literal extraction works.
    #[test]
    #[ignore]
    fn candidate_lines() {
        fn is_confirmed(m: LineMatchKind) -> bool {
            match m {
                LineMatchKind::Confirmed(_) => true,
                _ => false,
            }
        }
        fn is_candidate(m: LineMatchKind) -> bool {
            match m {
                LineMatchKind::Candidate(_) => true,
                _ => false,
            }
        }

        // With no line terminator set, we can't employ any optimizations,
        // so we get a confirmed match.
        let matcher = RegexMatcherBuilder::new().build(r"\wfoo\s").unwrap();
        let m = matcher.find_candidate_line(b"afoo ").unwrap().unwrap();
        assert!(is_confirmed(m));

        // With a line terminator and a regex specially crafted to have an
        // easy-to-detect inner literal, we can apply an optimization that
        // quickly finds candidate matches.
        let matcher = RegexMatcherBuilder::new()
            .line_terminator(Some(b'\n'))
            .build(r"\wfoo\s")
            .unwrap();
        let m = matcher.find_candidate_line(b"afoo ").unwrap().unwrap();
        assert!(is_candidate(m));
    }
}