1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
use crate::{Plot, PlotArg, XEnd};

#[derive(Debug, Clone)]
/// Use the Polynomial struct or polynomial() function to create a polynomial function that runs through all given points.
/// # Example
/// ```
/// use graplot::{x, Plot, Polynomial};
///
/// let poly = Polynomial::new(&[2., 3., 1.], &[2., 3., 2.]);
/// let plot = Plot::new((poly, x(10.)));
/// plot.show();
/// ```
pub struct Polynomial {
    coefficients: Vec<f64>,
}

impl Polynomial {
    pub fn new(xs: &[f64], ys: &[f64]) -> Polynomial {
        polynomial(xs, ys)
    }
}

pub fn polynomial(xs: &[f64], ys: &[f64]) -> Polynomial {
    let degree = xs.len() - 1;

    let mut coeffs = Vec::<f64>::with_capacity(xs.len() * xs.len());

    for x in xs {
        for pow in (0..=degree).rev() {
            coeffs.push(x.powi(pow as i32));
        }
    }
    Polynomial {
        coefficients: solve_lu(xs.len(), &coeffs, ys),
    }
}

impl PlotArg for Polynomial {
    fn as_plot(&self) -> crate::Plot {
        let mut xs = [0.; 200];

        let mut add = -100f64;
        for x in &mut xs {
            *x = add / 100.;
            add += 1.;
        }

        let mut ys = [0.; 200];

        let degree = self.coefficients.len() - 1;

        for (i, y) in ys.iter_mut().enumerate() {
            for (pow, coefficient) in self.coefficients.iter().enumerate() {
                *y += coefficient * xs[i].powi((degree - pow) as i32);
            }
        }
        Plot {
            xs: vec![xs.to_vec()],
            ys: vec![ys.to_vec()],
            line_desc: vec![Default::default()],
            axis_desc: Default::default(),
            desc: Default::default(),
        }
    }
}

impl PlotArg for (Polynomial, XEnd) {
    fn as_plot(&self) -> crate::Plot {
        let mut xs = [0.; 200];

        let mut add = -100f64;
        for x in &mut xs {
            *x = (add / 100.) * self.1 .0;
            add += 1.;
        }

        let mut ys = [0.; 200];

        let degree = self.0.coefficients.len() - 1;

        for (i, y) in ys.iter_mut().enumerate() {
            for (pow, coefficient) in self.0.coefficients.iter().enumerate() {
                *y += coefficient * xs[i].powi((degree - pow) as i32);
            }
        }
        Plot {
            xs: vec![xs.to_vec()],
            ys: vec![ys.to_vec()],
            line_desc: vec![Default::default()],
            axis_desc: Default::default(),
            desc: Default::default(),
        }
    }
}

impl PlotArg for (Polynomial, &str) {
    fn as_plot(&self) -> Plot {
        let mut plot = self.0.as_plot();
        plot.line_desc = vec![self.1.into()];
        plot
    }
}

impl PlotArg for (Polynomial, XEnd, &str) {
    fn as_plot(&self) -> Plot {
        let mut plot = (self.0.clone(), self.1).as_plot();
        plot.line_desc = vec![self.2.into()];
        plot
    }
}

pub fn solve_lu(n: usize, lhs: &[f64], rhs: &[f64]) -> Vec<f64> {
    let mut lu = vec![0f64; n * n];
    let mut sum;
    for i in 0..n {
        for j in i..n {
            sum = 0.;
            for k in 0..i {
                sum += lu[i * n + k] * lu[k * n + j];
            }
            lu[i * n + j] = lhs[i * n + j] - sum;
        }
        for j in (i + 1)..n {
            sum = 0.;
            for k in 0..i {
                sum += lu[j * n + k] * lu[k * n + i];
            }
            lu[j * n + i] = (1. / lu[i * n + i]) * (lhs[j * n + i] - sum)
        }
    }

    let mut y = vec![0.; n];
    for i in 0..n {
        sum = 0.;
        for k in 0..i {
            sum += lu[i * n + k] * y[k];
        }
        y[i] = rhs[i] - sum;
    }

    let mut x = vec![0.; n];
    for i in (0..n).rev() {
        sum = 0.;
        for k in (i + 1)..n {
            sum += lu[i * n + k] * x[k];
        }
        x[i] = (1. / lu[i * n + i]) * (y[i] - sum);
    }
    x
}