graphql_extract/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
//! Macro to extract data from deeply nested types representing GraphQL results
//!
//! # Suggested workflow
//!
//! 1. Generate query types using [cynic] and its [generator]
//! 1. Use [insta] to define an inline snapshot test so that the query string is visible in the
//!    module that defines the query types
//! 1. Define an `extract` function that takes the root query type and returns the data of interest
//! 1. Inside `extract`, use [`extract!`](crate::extract) as `extract!(data => { ... })`
//! 1. Inside the curly braces, past the query string from the snapshot test above
//! 1. Change all node names from `camelCase` to `snake_case`
//! 1. Add `?` after the nodes that are nullable
//! 1. Add `[]` after the nodes that are iterable
//!
//! [cynic]: https://cynic-rs.dev/
//! [generator]: https://generator.cynic-rs.dev/
//! [insta]: https://insta.rs/

use proc_macro2::{Span, TokenStream};
use quote::{quote, ToTokens as _};
use syn::parse::{Parse, ParseStream};
use syn::spanned::Spanned as _;
use syn::token::{self, Brace};
use syn::{braced, bracketed, parse_macro_input, parse_quote, Error, Ident, Token};

/// See the top-level [`crate`] doc for a description.
#[proc_macro]
pub fn extract(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    let root = parse_macro_input!(input as Root);
    let stmt = root.generate_extract();
    stmt.into()
}

struct Root {
    expr: syn::Expr,
    nested: Nested,
}

struct Node {
    ident: Ident,
    alias: Option<Ident>,
    optional: bool,
    iterable: bool,
    nested: Option<Nested>,
}

enum Nested {
    Nodes(Vec<Node>),
    Variant(Variant),
}

struct Variant {
    path: syn::Path,
    nodes: Vec<Node>,
}

//=================================================================================================
// Parsing
//=================================================================================================

impl Parse for Root {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let expr = input.parse()?;
        let _: Token![=>] = input.parse()?;
        let nested = input.parse()?;
        Ok(Self { expr, nested })
    }
}

impl Parse for Node {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let mut self_ = Self {
            ident: input.parse()?,
            alias: None,
            optional: false,
            iterable: false,
            nested: None,
        };

        // Caller is allowed to set an alias like `alias: node`
        let lookahead = input.lookahead1();
        if lookahead.peek(Token![:]) {
            let _: Token![:] = input.parse()?;
            self_.alias = Some(self_.ident);
            self_.ident = input.parse()?;
        }

        while !input.is_empty() {
            let lookahead = input.lookahead1();
            if lookahead.peek(Ident) {
                break; // There's another field to be parsed
            } else if lookahead.peek(Token![?]) {
                let question: Token![?] = input.parse()?;
                if self_.optional {
                    return Err(Error::new_spanned(
                        question,
                        "Can't have two `?` for the same node",
                    ));
                }
                self_.optional = true;
            } else if lookahead.peek(token::Bracket) {
                let content;
                let bracket = bracketed!(content in input);
                if self_.iterable {
                    return Err(Error::new(
                        bracket.span.span(),
                        "Can't have two `[]` for the same node",
                    ));
                }
                if !content.is_empty() {
                    return Err(Error::new(
                        bracket.span.span(),
                        "Only empty brackets allowed",
                    ));
                }
                self_.iterable = true;
            } else if lookahead.peek(token::Brace) {
                let nested = input.parse()?;
                self_.nested = Some(nested);
                break; // Everything after the closing brace is ignored
            } else {
                return Err(lookahead.error());
            }
        }

        Ok(self_)
    }
}

impl Node {
    fn within_braces(brace: Brace, content: ParseStream) -> syn::Result<Vec<Self>> {
        let mut nodes = vec![];
        while !content.is_empty() {
            let lookahead = content.lookahead1();
            if lookahead.peek(Token![...]) {
                return Err(Error::new(
                    brace.span.span(),
                    "Nodes can't be mixed with '... on Variant' matches",
                ));
            }
            nodes.push(content.parse()?);
        }
        if nodes.is_empty() {
            return Err(Error::new(
                brace.span.span(),
                "Empty braces; must have at least one node",
            ));
        }
        Ok(nodes)
    }
}

impl Parse for Nested {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        let content;
        let brace = braced!(content in input);

        let lookahead = content.lookahead1();
        Ok(if lookahead.peek(Token![...]) {
            let var = Self::Variant(content.parse()?);
            if !content.is_empty() {
                return Err(Error::new(
                    brace.span.span(),
                    "Only a single '... on Variant' match is supported within the same braces",
                ));
            }
            var
        } else {
            Self::Nodes(Node::within_braces(brace, &content)?)
        })
    }
}

impl Parse for Variant {
    fn parse(input: ParseStream) -> syn::Result<Self> {
        input.parse::<Token![...]>()?;
        let on: Ident = input.parse()?;
        if on != "on" {
            return Err(Error::new(on.span(), "Expected 'on'"));
        }
        let path = input.parse()?;
        let content;
        let brace = braced!(content in input);
        Ok(Self {
            path,
            nodes: Node::within_braces(brace, &content)?,
        })
    }
}

//=================================================================================================
// Generation
//=================================================================================================

impl Root {
    fn generate_extract(self) -> TokenStream {
        let Self { expr, nested, .. } = self;
        let data = Ident::new("data", Span::mixed_site());
        let err = data.to_string() + " is null";
        let (pats, tokens): (Vec<_>, Vec<_>) =
            nested.generate_extract(data.clone(), data.to_string());
        quote! {
            let #data = ( #expr ).ok_or(#err)?;
            let ( #(#pats),* ) = {
                #(#tokens)*
                ( #(#pats),* )
            };
        }
    }
}

impl Node {
    fn generate_extract(self, data: Ident, path: String) -> (syn::Pat, TokenStream) {
        let Self {
            ident,
            alias,
            optional,
            iterable,
            nested,
        } = self;
        let field = &ident;
        let ident = alias.as_ref().unwrap_or(&ident);

        let path = path + " -> " + ident.to_string().as_str();

        let assign = if optional {
            let err = path.clone() + " is null";
            quote!(let #ident = #data.#field.ok_or(#err)?;)
        } else {
            quote!(let #ident = #data.#field;)
        };

        let Some(inner) = nested else {
            return (parse_quote!(#ident), assign);
        };

        let (pats, tokens) = inner.generate_extract(ident.clone(), path);
        let (pat, tokens_);
        // TODO: consider
        // - verifying that no nested `[]` exist
        // - detecting any `?` in the subtree and setting the return type accordingly
        if iterable {
            pat = parse_quote!(#ident);
            tokens_ = quote! {
                #assign
                let #ident = #ident.into_iter().map(|#ident| -> Result<_, &'static str> {
                    #(#tokens)*
                    Ok(( #(#pats),* ))
                });
            };
        } else {
            pat = parse_quote!( (#(#pats),*) );
            tokens_ = quote! {
                #assign
                let ( #(#pats),* ) = {
                    #(#tokens)*
                    ( #(#pats),* )
                };
            };
        }
        (pat, tokens_)
    }
}

impl Nested {
    fn generate_extract(self, data: Ident, path: String) -> (Vec<syn::Pat>, Vec<TokenStream>) {
        match self {
            Self::Nodes(nodes) => nodes
                .into_iter()
                .map(|n| n.generate_extract(data.clone(), path.clone()))
                .unzip(),
            Self::Variant(Variant { path: var, nodes }) => {
                let path = path + " ... on " + var.to_token_stream().to_string().as_str();
                let err = path.clone() + " is null";
                let val = Ident::new("val", Span::mixed_site());
                let assign = quote! {
                    let #var(#val) = #data else {
                        return Err(#err);
                    };
                };

                let mut tokens_ = vec![assign];
                let (pats, tokens): (Vec<_>, Vec<_>) = nodes
                    .into_iter()
                    .map(|n| n.generate_extract(val.clone(), path.clone()))
                    .unzip();
                tokens_.extend(tokens);
                (pats, tokens_)
            }
        }
    }
}