1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
use crate::graphs::*;
use crate::util::DisjointSet;

use std::cmp::Reverse;
use std::collections::BinaryHeap;
use std::collections::HashMap;
use std::collections::HashSet;
use std::collections::VecDeque;
use std::fmt::Debug;

use std::sync::{Arc, Mutex};
use std::thread;

type VLT = String; // vertex label type

const INF: f64 = f64::INFINITY;

//type TMPV = f64; // Should be V, but I'm being specific so I can debug.
/// Dijkstra Algorithm - Find the single source shortest path given a graph and a starting vertex
///
/// # Parameters:
///
/// 1. g - the graph that needs to be traversed. This will be of type `Graph`
/// 2. start_vertex - the source vertex from which you want to find the shortest distance of all other vertex
///
/// # Return Value:
///
/// Void
///
///
/// # Example Usage:
///
/// ```
///
/// use graphalgos::algos;
/// use graphalgos::graphs;
///
/// let mut g: graphs::Graph = graphs::Graph::new(false); // creates an undirected graph
///
/// // Add vertices
///
/// g.add_vertex(String::from("A")); // add vertex A
/// g.add_vertex(String::from("B")); // add vertex B
/// ...
/// ...
/// g.add_vertex(String::from("I")); // add vertex I
///
/// // Add edges
///
/// // Add multiple edges
/// g.add_edge(
///     (String::from("A"), String::from('B')),
///     graphs::GNumber::I32(4),
/// );
/// ...
/// ...
/// algos::dijkstra(g);
///
/// ```
///
fn _dijkstra<E>(mut g: Graph, start_vertex: VLT)
where
    E: Clone + Debug,
{
    println!("Beginning Dikstra's algorithm.");

    // let prev: HashMap<Vertex<TMPV>, Option<Vertex<TMPV>>> = HashMap::new();
    let mut prev: HashMap<VLT, Option<VLT>> = HashMap::new();

    for (lbl, vertex) in g.get_vertices().iter_mut() {
        //Initialize all vertex values to Inf.
        //We will interpret this value as the distance to the vertex.
        (*vertex).set_value(INF);

        //Initialize previous to none.
        prev.insert(lbl.clone(), None);
    }

    //Initialize distance to start as 0.
    //(*g.get_vertices().get_mut(&start_vertex).unwrap()).set_value(0.0);
    g.get_vertex(&start_vertex).unwrap().set_value(0.0);

    //Can maybe convert to binary heap so we have ordering.
    //let heap: BinaryHeap<_> = g.get_vertices().values().collect();

    //g.get_vertices().iter();
    //let num = (*vertex).get_value();
    //println!("{}", (*vertex).get_value());
    //(*vertex).set_value(44);
    //println!("{}", (*vertex).get_value());
}

fn dfs(g: &mut Graph, start_vertex: VLT) -> HashMap<VLT, bool> {
    //Stack will hold all vertices. Algorithm will end when all vertices have been popped.
    let stack: Arc<Mutex<VecDeque<Vertex>>> = Arc::new(Mutex::new(VecDeque::new()));
    //Hashmap letting us know which vertices have been visited by dfs.
    let visited: Arc<Mutex<HashMap<VLT, bool>>> = Arc::new(Mutex::new(HashMap::new()));
    //Initialize visited.
    for (lbl, _) in g.get_vertices().iter() {
        (*visited).lock().unwrap().insert((*lbl).clone(), false);
    }
    //Populate stack.
    (*stack)
        .lock()
        .unwrap()
        .push_front(g.get_vertex(&start_vertex).unwrap().clone());

    //Because of interactions between lifetimes and Arc's, we have to clone the graph.
    //It could greatly speed up our algorithm if we found a way to avoid this.
    let h = Arc::new(Mutex::new(g.clone()));

    let mut handles: Vec<thread::JoinHandle<_>> = vec![]; //Vector of thread handles.
    let max_num_threads = 10; //Maximum number of theads allowed at a time.
    let num_threads = Arc::new(Mutex::new(0)); //Counter to keep track of number of threads.
    while !(*(*stack).lock().unwrap()).is_empty() {
        //While stack is not empty
        let stack_clone = Arc::clone(&stack);
        let visited_clone = Arc::clone(&visited);
        let g_clone = Arc::clone(&h);

        let num_threads = Arc::clone(&num_threads);
        if *num_threads.lock().unwrap() < max_num_threads {
            //Limit the number of threads.
            {
                *num_threads.lock().unwrap() += 1;
            }
            let handler = thread::spawn(move || {
                let mut sc = stack_clone.lock().unwrap();
                if let Some(v) = sc.pop_front() {
                    //Pop vertex off of stack.
                    let mut vis = visited_clone.lock().unwrap();
                    if !vis.get(&v.label).unwrap() {
                        //If vertex has not already been visited:
                        vis.insert(v.label.clone(), true); //Label vertex as visited.
                        let mut int_g = g_clone.lock().unwrap();
                        for neighbor in int_g.get_neighbors(&v.label).iter() {
                            //Push all unvisited neighbors onto the stack.
                            if !vis.get(neighbor).unwrap() {
                                sc.push_front((int_g.get_vertex(neighbor).unwrap()).clone());
                            }
                        }
                    }
                } else {
                    //This means the algorithm has finished, and we can begin wrapping up threads.
                }
                *num_threads.lock().unwrap() -= 1;
            });
            handles.push(handler);
        }
    }

    //Make sure all threads have finished.
    for handle in handles {
        let _ = handle.join();
    }

    //Return the visited hashmap.
    let x = (*visited.lock().unwrap()).clone();
    x
}

// pub fn bellman_ford<E>(mut _g: Graph, _start_vertex: VLT)
// where
//     E: Clone,
// {
//     println!("Beginning the Bellman-Ford algorithm.");
// }

/// Kruskals Algorithm - Generate MST for any graph using the Kruskal's Algorithm
///
/// # Parameters:
///
/// 1. g - the graph that needs to be converted to MST. This will be of type `Graph`
///
/// # Return Value:
///
/// This function returns a result, which will be either a Graph - the MST that was generated using the algo or a `Error<String>` in case of any error.
///
/// The common errors would be - if graph is directed or if MST cannot be generated for the given graph
///
///
/// # Example Usage:
///
/// ```
///
/// use graphalgos::algos;
/// use graphalgos::graphs;
///
/// let mut g: graphs::Graph = graphs::Graph::new(false); // creates an undirected graph
///
/// // Add vertices
///
/// g.add_vertex(String::from("A")); // add vertex A
/// g.add_vertex(String::from("B")); // add vertex B
/// ...
/// ...
/// g.add_vertex(String::from("I")); // add vertex I
///
/// // Add edges
///
/// // Add multiple edges
/// g.add_edge(
///     (String::from("A"), String::from('B')),
///     graphs::GNumber::I32(4),
/// );
/// ...
/// ...
/// let mst = algos::kruskals(g); // get the mst using kruskals algorithm
///
/// // kruskals returns results, so use match statement to process it
/// match mst{
///     Ok(g) => g.print(), // print the MST if generated successfully
///     Err(e) => println!("{}", e), // print the error if any
/// }
///
/// ```
///
pub fn kruskals(mut g: Graph) -> Result<Graph, String>
// E: Clone + std::cmp::PartialOrd + Display + Debug,
    // E will have int or float values so we need to mark the Ord to compare them
{
    // check if graph has directed edges - Kruskals work on undirected graph and not directed
    let is_directed = match g.edge_type {
        EdgeType::Directed => true,
        EdgeType::Undirected => false,
    };

    // return error if the graph has directed edges
    if is_directed {
        return Err(String::from(
            "Kruskals only work properly on undirected graphs!",
        ));
    }

    // Check for empty or trivial graph
    if g.get_vertices().len() <= 1 {
        return Ok(g);
    }

    // println!("{}", g.edges.len());

    // vector to collect all edge values
    let mut edges: Vec<Edge> = Vec::new();

    // fill the vector with edges in graph
    for (_, edge) in &g.edges {
        edges.push(edge.clone());
    }

    edges.sort_by(|a, b| a.weight.partial_cmp(&b.weight).unwrap());

    // The graph that we are going to return
    let mut mst = Graph::new(false);

    // Use Disjoint set for union find algorithm
    let mut set = DisjointSet::new();

    // Add all the vertices to the disjoint set
    for (node, _) in &g.vertices {
        set.set_insert(node.clone());
    }

    // iterate over edges - smallest weight to largest weight
    for edge in edges {
        let u = edge.endpoints.0.clone(); // get the first vertex of the edge
        let v = edge.endpoints.1.clone(); // get the second vertex of the edge
        set.find(&u); // Find parent of u

        // check if they are in different sets
        if set.find(&u) != set.find(&v) {
            // If they are in different sets then we join them using union and also use the edge in MST
            mst.add_vertex(u.clone()); // add vertex u to mst
            mst.add_vertex(v.clone()); // add vertex v to mst
            mst.add_edge((u.clone(), v.clone()), edge.weight.clone());
            set.union(&u, &v);
        }
    }

    // check if MST is successfull
    if mst.edges.len() != mst.vertices.len() - 1 {
        return Err(String::from(
            "MST doesn't exist for this graph since it is not connected",
        ));
    }

    println!("\nMST generated using Kruskal's algorithm: \n");

    for (_, edge) in &mst.edges {
        println!(
            "({}) -------[{}]------- ({})",
            edge.endpoints.0.clone(),
            edge.weight,
            edge.endpoints.1.clone()
        );
    }

    println!("");

    Ok(mst)
}

/// Boruvka's Algorithm - Generate MST for any graph using the Boruvka's Algorithm
///
/// # Parameters:
///
/// 1. g - the graph that needs to be converted to MST. This will be of type `Graph`
///
/// # Return Value:
///
/// This function returns a result, which will be either a Graph - the MST that was generated using the algo or a `Error<String>` in case of any error.
///
/// The common errors would be - if graph is directed or if MST cannot be generated for the given graph
///
///
/// # Example Usage:
///
/// ```
/// use graphalgos::algos;
/// use graphalgos::graphs;

/// let mut g: graphs::Graph = graphs::Graph::new(false); /// creates an undirected graph

/// // Add vertices

/// g.add_vertex(String::from("A")); // add vertex A
/// g.add_vertex(String::from("B")); // add vertex B

/// g.add_vertex(String::from("I")); // add vertex I

/// // Add edges

/// // Add multiple edges
/// g.add_edge(
///     (String::from("A"), String::from('B')),
///     graphs::GNumber::I32(4),
/// );

/// let mst = algos::boruvka(g); // get the mst using boruvkas algorithm

/// // boruvkas returns results, so use match statement to process it
/// match mst {
///     Ok(g) => g.print(),          // print the MST if generated successfully
///     Err(e) => println!("{}", e), // print the error if any
/// }
/// ```
///
pub fn boruvka(mut g: Graph) -> Result<Graph, String>
// E: Clone + std::cmp::PartialOrd + Display + Debug, // E will have int or float values so we need to mark the Ord to compare them
{
    // check if graph has directed edges - boruvkas work on undirected graph and not directed
    let is_directed = match g.edge_type {
        EdgeType::Directed => true,
        EdgeType::Undirected => false,
    };

    // return error if the graph has directed edges

    if is_directed {
        return Err(String::from(
            "Boruvka's only work properly on undirected graphs!",
        ));
    }

    // Check for empty or trivial graph
    if g.get_vertices().len() <= 1 {
        return Ok(g);
    }

    println!("{}", g.edges.len());

    // vector to collect all edge values
    let mut edges: Vec<Edge> = Vec::new();

    //
    let mut added_edges: Vec<Edge> = Vec::new();

    // fill the vector with edges in graph
    for (_, edge) in &g.edges {
        edges.push(edge.clone());
    }

    edges.sort_by(|a, b| a.weight.partial_cmp(&b.weight).unwrap());

    // set to keep track of visited nodes
    let mut visited = HashSet::new();

    // Use Disjoint set for union find algorithm
    let mut set = DisjointSet::new();

    // Add all the vertices to the disjoint set
    for (node, _) in &g.vertices {
        set.set_insert(node.clone());
    }

    //Minimum spanning graph initialization
    let mut mst = Graph::new(true);

    // Add the first vertex to the visited set
    let first_vertex = g.vertices.keys().next().unwrap().clone();
    visited.insert(first_vertex.clone());

    let edges1 = edges.clone();
    for (vertex, _) in &g.vertices {
        //
        for (endpoint, edge) in &g.edges {
            if endpoint.0 == vertex.clone() {
                added_edges.push(edge.clone());
            }
        }
        for edge in &edges1 {
            let u = edge.endpoints.0.clone(); // get the first vertex of the edge
            let v = edge.endpoints.1.clone();

            // Skip this edge if both endpoints are already visited
            if visited.contains(&u) && visited.contains(&v) {
                continue;
            }

            // get the second vertex of the edge
            set.find(&u); // Find parent of u
                          // check if they are in different sets
            if set.find(&u) != set.find(&v) {
                // If they are in different sets then we join them using union and also use the edge in MST
                mst.add_vertex(u.clone()); // add vertex u to mst
                mst.add_vertex(v.clone()); // add vertex v to mst
                mst.add_edge((u.clone(), v.clone()), edge.weight.clone());
                added_edges.push(edge.clone());
                set.union(&u, &v);
            }
        }
    }

    let mut remaining_edges: Vec<Edge> = Vec::new();
    for iter in added_edges {
        if edges.contains(&iter) {
            continue;
        } else {
            remaining_edges.push(iter);
        }
    }

    remaining_edges.sort_by(|a, b| a.weight.partial_cmp(&b.weight).unwrap());

    for in_between in remaining_edges {
        let u = in_between.endpoints.0.clone(); // get the first vertex of the edge
        let v = in_between.endpoints.1.clone();
        if set.find(&u) != set.find(&v) {
            // If they are in different sets then we join them using union and also use the edge in MST
            mst.add_vertex(u.clone()); // add vertex u to mst
            mst.add_vertex(v.clone()); // add vertex v to mst
            mst.add_edge((u.clone(), v.clone()), in_between.weight.clone());
            set.union(&u, &v);
        }
    }

    // check if MST is successfull
    if mst.edges.len() != mst.vertices.len() - 1 {
        return Err(String::from(
            "MST doesn't exist for this graph since it is not connected",
        ));
    }

    println!("\nMST generated using Boruvka's algorithm: \n");

    for (_, edge) in &mst.edges {
        println!(
            "({}) -------[{}]------- ({})",
            edge.endpoints.0.clone(),
            edge.weight,
            edge.endpoints.1.clone()
        );
    }

    println!("");

    Ok(mst)
}

/// Reverse Delete Algorithm - Generate MST for any graph using the Reverse Delete Algorithm
///
/// # Parameters:
///
/// 1. g - the graph that needs to be converted to MST. This will be of type `Graph`
///
/// # Return Value:
///
/// This function returns a result, which will be either a Graph - the MST that was generated using the algo or a `Error<String>` in case of any error.
///
/// The common errors would be - if graph is directed or if MST cannot be generated for the given graph
///
/// # Example Usage:
///
/// ```
/// use graphalgos::algos;
/// use graphalgos::graphs;

/// let mut g: graphs::Graph = graphs::Graph::new(false); /// creates an undirected graph

/// // Add vertices

/// g.add_vertex(String::from("A")); // add vertex A
/// g.add_vertex(String::from("B")); // add vertex B

/// g.add_vertex(String::from("I")); // add vertex I

/// // Add edges

/// // Add multiple edges
/// g.add_edge(
///     (String::from("A"), String::from('B')),
///     graphs::GNumber::I32(4),
/// );

/// let mst = algos::reverse_delete(g); // get the mst using reverse delete algorithm

/// // reverse delete returns results, so use match statement to process it
/// match mst {
///     Ok(g) => g.print(),          // print the MST if generated successfully
///     Err(e) => println!("{}", e), // print the error if any
/// }
/// ```
///
pub fn reverse_delete(mut g: Graph) -> Result<Graph, String> {
    // Reverse delete only works for undirected graphs.
    let _is_directed = match g.edge_type {
        EdgeType::Directed => {
            return Err(String::from(
                "Reverse delete only work on undirected graphs!",
            ))
        }
        EdgeType::Undirected => {}
    };

    // Check for empty or trivial graph
    if g.get_vertices().len() <= 1 {
        return Ok(g);
    }

    // Check for connected graph
    //TODO: Consider removing this check for speed and instead check that resulting MST is connected.
    let start_vertex_lbl = g.get_vertices().keys().next().unwrap().clone(); //Get an arbitrary start vertex.
    if !dfs(&mut g, start_vertex_lbl).values().all(|&x| x) {
        return Err(String::from("Graph is not connected."));
    }

    // vector to collect all edge values
    let mut edges: Vec<Edge> = Vec::new();

    // fill the vector with edges in graph
    for (_, edge) in g.get_edges().iter() {
        edges.push(edge.clone());
    }

    edges.sort_by(|a, b| a.weight.partial_cmp(&b.weight).unwrap());
    edges.reverse(); //Instead of reversing here, could use a reverse iterator. Not sure which is faster.

    // iterate over edges - largest to smallest weight
    for edge in edges.iter() {
        let w = g.get_edges().get(&edge.endpoints).unwrap().weight.clone(); //TODO: This isn't pretty. Better is to have remove_edge return the edge that was removed.
        g.remove_edge(edge.endpoints.clone());
        let start_vertex_lbl = g.get_vertices().keys().next().unwrap().clone();
        if !dfs(&mut g, start_vertex_lbl).values().all(|&x| x) {
            g.add_edge(edge.endpoints.clone(), w);
        }
    }

    println!("\nMST: \n");
    for (_, edge) in &g.edges {
        println!(
            "({}) -------[{}]------- ({})",
            edge.endpoints.0.clone(),
            edge.weight,
            edge.endpoints.1.clone()
        );
    }

    Ok(g)
}

/// Prim's Algorithm - Generate MST for any graph using the Prim's Algorithm
///
/// # Parameters:
///
/// 1. g - the graph that needs to be converted to MST. This will be of type `Graph`
///
/// # Return Value:
///
/// This function returns a result, which will be either a Graph - the MST that was generated using the algo or a `Error<String>` in case of any error.
///
/// The common errors would be - if graph is directed or if MST cannot be generated for the given graph
///
/// # Example Usage:
///
/// ```
/// use graphalgos::algos;
/// use graphalgos::graphs;

/// let mut g: graphs::Graph = graphs::Graph::new(false); /// creates an undirected graph

/// // Add vertices

/// g.add_vertex(String::from("A")); // add vertex A
/// g.add_vertex(String::from("B")); // add vertex B

/// g.add_vertex(String::from("I")); // add vertex I

/// // Add edges

/// // Add multiple edges
/// g.add_edge(
///     (String::from("A"), String::from('B')),
///     graphs::GNumber::I32(4),
/// );

/// let mst = algos::boruvka(g); // get the mst using prims algorithm

/// // prims returns results, so use match statement to process it
/// match mst {
///     Ok(g) => g.print(),          // print the MST if generated successfully
///     Err(e) => println!("{}", e), // print the error if any
/// }
/// ```
///
pub fn prims(mut g: Graph) -> Result<Graph, String> {
    // check if graph has directed edges - Prims works on undirected graph and not directed
    let is_directed = match g.edge_type {
        EdgeType::Directed => true,
        EdgeType::Undirected => false,
    };

    // return error if the graph has directed edges
    if is_directed {
        return Err(String::from(
            "Prims only works properly on undirected graphs!",
        ));
    }
    // Check for empty or trivial graph
    if g.get_vertices().len() <= 1 {
        return Ok(g);
    }

    // Check for connected graph
    //TODO: Consider removing this check for speed and instead check that resulting MST is connected.
    let start_vertex_lbl = g.get_vertices().keys().next().unwrap().clone(); //Get an arbitrary start vertex.
    if !dfs(&mut g, start_vertex_lbl).values().all(|&x| x) {
        return Err(String::from("Graph is not connected."));
    }

    // vector to collect all edge values
    let mut edges: Vec<Edge> = Vec::new();

    // fill the vector with edges in graph
    for (_, edge) in &g.edges {
        edges.push(edge.clone());
    }

    // The graph that we are going to return
    let mut mst = Graph::new(false);

    // set to keep track of visited nodes
    let mut visited = HashSet::new();

    // Use a priority queue to keep track of the minimum edge at each step
    let mut pq = BinaryHeap::new();

    // Add the first vertex to the visited set
    let first_vertex = g.vertices.keys().next().unwrap().clone();
    visited.insert(first_vertex.clone());

    // Add all edges from the first vertex to the priority queue
    for (endpoint, edge) in &g.edges {
        if endpoint.0 == first_vertex || endpoint.1 == first_vertex {
            pq.push(Reverse(edge.clone()));
        }
    }

    //Sort the edges
    //edges.sort_by(|a, b| a.weight.partial_cmp(&b.weight).unwrap());

    // Iterate until we have visited all vertices
    while visited.len() != g.vertices.len() {
        // Get the minimum edge from the priority queue
        let Reverse(edge) = pq.pop().unwrap();

        // Get the two endpoints of the edge
        let u = edge.endpoints.0.clone();
        let v = edge.endpoints.1.clone();

        // Skip this edge if both endpoints are already visited
        if visited.contains(&u) && visited.contains(&v) {
            continue;
        }

        // Add the vertices and edge to the MST
        mst.add_vertex(u.clone());
        mst.add_vertex(v.clone());
        mst.add_edge(
            (u.clone(), v.clone()),
            edge.weight.clone(),
            //graphs::EdgeType::Undirected,
        );

        // Add the endpoint that is not visited to the visited set
        if visited.contains(&u) {
            visited.insert(v.clone());
        } else {
            visited.insert(u.clone());
        }

        // Add all edges from the new visited vertex to the priority queue
        for (endpoint, edge) in &g.edges {
            if visited.contains(&endpoint.0) && !visited.contains(&endpoint.1)
                || visited.contains(&endpoint.1) && !visited.contains(&endpoint.0)
            {
                pq.push(Reverse(edge.clone()));
            }
        }
    }

    println!("\nMST: \n");

    for (_, edge) in &mst.edges {
        println!(
            "({}) -------{}------- ({})",
            edge.endpoints.0.clone(),
            edge.weight,
            edge.endpoints.1.clone()
        );
    }

    println!("");

    Ok(mst)
}

/// Tests
#[cfg(test)]
mod algos_tests {
    use super::*;
    fn get_test_graph_1(directed: bool) -> Graph {
        // Generate a connected undirected graph.
        let mut g: Graph = Graph::new(directed);
        g.add_vertex(String::from("A"));
        g.add_vertex(String::from("B"));
        g.add_vertex(String::from("C"));
        g.add_vertex(String::from("D"));
        g.add_vertex(String::from("E"));
        g.add_vertex(String::from("F"));
        g.add_vertex(String::from("G"));
        g.add_vertex(String::from("H"));
        g.add_vertex(String::from("I"));

        // Integers - i32
        g.add_edge((String::from("A"), String::from('B')), GNumber::I32(4));
        g.add_edge((String::from("B"), String::from('C')), GNumber::I32(8));
        g.add_edge((String::from("C"), String::from('D')), GNumber::I32(7));
        g.add_edge((String::from("D"), String::from('E')), GNumber::I32(10));
        g.add_edge((String::from("E"), String::from('F')), GNumber::I32(11));
        g.add_edge((String::from("F"), String::from('G')), GNumber::I32(2));
        g.add_edge((String::from("G"), String::from('H')), GNumber::I32(1));
        g.add_edge((String::from("H"), String::from('I')), GNumber::I32(7));
        g.add_edge((String::from("H"), String::from('A')), GNumber::I32(9));
        g.add_edge((String::from("B"), String::from('H')), GNumber::I32(12));
        g.add_edge((String::from("C"), String::from('I')), GNumber::I32(2));
        g.add_edge((String::from("C"), String::from('F')), GNumber::I32(4));
        g.add_edge((String::from("D"), String::from('F')), GNumber::I32(14));
        g.add_edge((String::from("G"), String::from('I')), GNumber::I32(6));
        g
    }

    fn get_test_graph_2(directed: bool) -> Graph {
        //Generates a graph with 2 connected components.
        let mut g = get_test_graph_1(directed);
        g.remove_vertex(String::from("I"));
        g.remove_edge((String::from("B"), String::from('C')));
        g.remove_edge((String::from("F"), String::from('G')));
        g
    }

    fn get_mst_of_graph_1() -> Graph {
        //Generate solution to test graph 1.
        let mut g: Graph = Graph::new(false);
        g.add_vertex(String::from("A"));
        g.add_vertex(String::from("B"));
        g.add_vertex(String::from("C"));
        g.add_vertex(String::from("D"));
        g.add_vertex(String::from("E"));
        g.add_vertex(String::from("F"));
        g.add_vertex(String::from("G"));
        g.add_vertex(String::from("H"));
        g.add_vertex(String::from("I"));
        g.add_edge((String::from("A"), String::from('B')), GNumber::I32(4));
        g.add_edge((String::from("B"), String::from('C')), GNumber::I32(8));
        g.add_edge((String::from("C"), String::from('D')), GNumber::I32(7));
        g.add_edge((String::from("D"), String::from('E')), GNumber::I32(10));
        g.add_edge((String::from("F"), String::from('G')), GNumber::I32(2));
        g.add_edge((String::from("G"), String::from('H')), GNumber::I32(1));
        g.add_edge((String::from("C"), String::from('I')), GNumber::I32(2));
        g.add_edge((String::from("C"), String::from('F')), GNumber::I32(4));
        g
    }

    //Test depth-first search.
    #[test]
    fn test_dfs_on_connected() {
        let mut g = get_test_graph_1(false);
        let res = dfs(&mut g, String::from("A"));
        assert!(res.values().all(|&x| x));
        println!("dfs result: {:?}", res);
    }

    #[test]
    fn test_dfs_on_disconnected() {
        let mut g = get_test_graph_2(false);
        let res = dfs(&mut g, String::from("A"));
        assert!(res.get(&String::from("G")).unwrap());
        assert!(!res.get(&String::from("E")).unwrap());
    }

    //Test reverse delete algorithm.
    #[test]
    fn test_reverse_delete_on_directed() {
        let g = get_test_graph_1(true);
        //TODO: Figure out how to check assertion error.
        assert!(reverse_delete(g).is_err());
        //assert_eq!(reverse_delete(G).unwrap_err(), "Reverse delete only work on undirected graphs!");
    }

    #[test]
    fn test_reverse_delete_on_empty() {
        let g: Graph = Graph::new(false);
        //TODO: Come up with a better check.
        assert_eq!(reverse_delete(g).unwrap().get_vertices().len(), 0);
    }

    #[test]
    fn test_reverse_delete_on_trivial() {
        let mut g: Graph = Graph::new(false);
        g.add_vertex(String::from("Banana"));
        //TODO: Come up with a better check.
        assert_eq!(reverse_delete(g).unwrap().get_vertices().len(), 1);
    }

    #[test]
    fn test_reverse_delete_disconnected() {
        let g = get_test_graph_2(false);
        assert!(reverse_delete(g).is_err());
    }

    #[test]
    fn test_reverse_delete_on_non_trivial() {
        let g = get_test_graph_1(false);
        let mut mst = reverse_delete(g).unwrap();
        let mut solution = get_mst_of_graph_1();
        println!("{:?}", mst.get_edges().keys());
        println!("{:?}", solution.get_edges().keys());
        assert!(mst
            .get_edges()
            .keys()
            .all(|x| solution.get_edges().contains_key(x)));
    }

    //Test boruvka's algorithm.
    #[test]
    fn test_boruvka_on_directed() {
        let g = get_test_graph_1(true);
        //TODO: Figure out how to check assertion error.
        assert!(boruvka(g).is_err());
        //assert_eq!(reverse_delete(G).unwrap_err(), "Boruvka only work on undirected graphs!");
    }

    #[test]
    fn test_boruvka_on_empty() {
        let g: Graph = Graph::new(false);
        //TODO: Come up with a better check.
        assert_eq!(boruvka(g).unwrap().get_vertices().len(), 0);
    }

    #[test]
    fn test_boruvka_on_trivial() {
        let mut g: Graph = Graph::new(false);
        g.add_vertex(String::from("Banana"));
        //TODO: Come up with a better check.
        assert_eq!(boruvka(g).unwrap().get_vertices().len(), 1);
    }

    #[test]
    fn test_boruvka_disconnected() {
        let g = get_test_graph_2(false);
        assert!(boruvka(g).is_err());
    }

    #[test]
    fn test_boruvka_on_non_trivial() {
        let g = get_test_graph_1(false);
        let mut mst = boruvka(g).unwrap();
        let mut solution = get_mst_of_graph_1();
        println!("{:?}", mst.get_edges().keys());
        println!("{:?}", solution.get_edges().keys());
        assert!(mst
            .get_edges()
            .keys()
            .all(|y| solution.get_edges().contains_key(y)));
    }

    //Test Kruskal's algorithm.
    #[test]
    fn test_kruskals_on_directed() {
        let g = get_test_graph_1(true);
        //TODO: Figure out how to check assertion error.
        assert!(kruskals(g).is_err());
        //assert_eq!(reverse_delete(G).unwrap_err(), "Boruvka only work on undirected graphs!");
    }

    #[test]
    fn test_kruskals_on_empty() {
        let g: Graph = Graph::new(false);
        //TODO: Come up with a better check.
        assert_eq!(kruskals(g).unwrap().get_vertices().len(), 0);
    }

    #[test]
    fn test_kruskals_on_trivial() {
        let mut g: Graph = Graph::new(false);
        g.add_vertex(String::from("Banana"));
        //TODO: Come up with a better check.
        assert_eq!(kruskals(g).unwrap().get_vertices().len(), 1);
    }

    #[test]
    fn test_kruskals_disconnected() {
        let g = get_test_graph_2(false);
        assert!(kruskals(g).is_err());
    }

    #[test]
    fn test_kruskals_on_non_trivial() {
        let g = get_test_graph_1(false);
        let mut mst = kruskals(g).unwrap();
        let mut solution = get_mst_of_graph_1();
        println!("{:?}", mst.get_edges().keys());
        println!("{:?}", solution.get_edges().keys());
        assert!(mst
            .get_edges()
            .keys()
            .all(|y| solution.get_edges().contains_key(y)));
    }
    // Test Prim's algorithm on an empty graph
    #[test]
    fn test_prims_on_empty() {
        let g: Graph = Graph::new(false);
        assert_eq!(prims(g).unwrap().get_vertices().len(), 0);
    }

    // Test Prim's algorithm on a trivial graph
    #[test]
    fn test_prims_on_trivial() {
        let mut g: Graph = Graph::new(false);
        g.add_vertex(String::from("Apple"));
        assert_eq!(prims(g).unwrap().get_vertices().len(), 1);
    }

    // Test Prim's algorithm on a disconnected graph
    #[test]
    fn test_prims_disconnected() {
        let g = get_test_graph_2(false);
        assert!(prims(g).is_err());
    }

    // Test Prim's algorithm on a non-trivial graph
    #[test]
    fn test_prims_on_non_trivial() {
        let g = get_test_graph_1(false);
        let mut mst = prims(g).unwrap();
        let mut solution = get_mst_of_graph_1();
        assert!(mst
            .get_edges()
            .keys()
            .all(|y| solution.get_edges().contains_key(y)));
    }
}