1pub trait GraphConversion {
3 fn bit_vec(&self) -> &[usize];
5
6 fn size(&self) -> usize;
8
9 fn is_directed(&self) -> bool;
11
12 fn to_dot(&self, id: Option<usize>) -> String {
14 let n = self.size();
15 let bit_vec = self.bit_vec();
16
17 let mut dot = String::new();
18
19 if self.is_directed() {
21 dot.push_str("digraph ");
22 } else {
23 dot.push_str("graph ");
24 }
25
26 if let Some(id) = id {
28 dot.push_str(&format!("graph_{} {{", id));
29 } else {
30 dot.push('{');
31 }
32
33 if self.is_directed() {
35 self.to_directed_dot(&mut dot, bit_vec, n);
36 } else {
37 self.to_undirected_dot(&mut dot, bit_vec, n);
38 }
39
40 dot.push_str("\n}");
42
43 dot
44 }
45
46 fn to_undirected_dot(&self, dot: &mut String, bit_vec: &[usize], n: usize) {
47 for i in 0..n {
48 for j in i..n {
49 if bit_vec[i * n + j] == 1 {
50 dot.push_str(&format!("\n{} -- {};", i, j));
51 }
52 }
53 }
54 }
55
56 fn to_directed_dot(&self, dot: &mut String, bit_vec: &[usize], n: usize) {
57 for i in 0..n {
58 for j in 0..n {
59 if bit_vec[i * n + j] == 1 {
60 dot.push_str(&format!("\n{} -> {};", i, j));
61 }
62 }
63 }
64 }
65
66 fn to_adjmat(&self) -> String {
68 let n = self.size();
69 let bit_vec = self.bit_vec();
70
71 let mut adj = String::new();
72 for i in 0..n {
73 for j in 0..n {
74 adj.push_str(&format!("{}", bit_vec[i * n + j]));
75 if j < n - 1 {
76 adj.push(' ');
77 }
78 }
79 adj.push('\n');
80 }
81 adj
82 }
83
84 fn to_flat(&self) -> String {
86 let n = self.size();
87 let bit_vec = self.bit_vec();
88
89 let mut flat = String::new();
90 for i in 0..n {
91 for j in 0..n {
92 flat.push_str(&format!("{}", bit_vec[i * n + j]));
93 }
94 }
95 flat
96 }
97
98 fn to_net(&self) -> String {
100 let n = self.size();
101 let bit_vec = self.bit_vec();
102
103 let mut net = String::new();
104 net.push_str(&format!("*Vertices {}\n", n));
105 for i in 0..n {
106 net.push_str(&format!("{} \"{}\"\n", i + 1, i));
107 }
108 net.push_str("*Arcs\n");
109 for i in 0..n {
110 for j in 0..n {
111 if bit_vec[i * n + j] == 1 {
112 net.push_str(&format!("{} {}\n", i + 1, j + 1));
113 }
114 }
115 }
116 net
117 }
118}