1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
use crate::graph::{ImageEdge, ImageNode};
use std::cell::{Cell, RefCell};
/// Represents an image graph, consisting of one node per pixel which are 4-connected.
#[derive(Debug, Clone, Default)]
pub struct ImageGraph {
/// Number of components.
k: Cell<usize>,
/// All nodes in this graph.
nodes: Nodes,
/// All edges in this graph.
edges: Edges,
}
#[derive(Debug, Clone, Default)]
pub struct Nodes {
nodes: Vec<RefCell<ImageNode>>,
}
#[derive(Debug, Clone, Default)]
pub struct Edges {
edges: Vec<RefCell<ImageEdge>>,
}
impl ImageGraph {
/// Constructs an image graph with the given exact number of nodes.
///
/// # Arguments
///
/// * `n` - The number of nodes to allocate.
pub fn new_with_nodes(n: usize) -> Self {
Self {
k: Cell::new(n),
nodes: Nodes::allocated(n),
..Self::default()
}
}
/// Resets the image graph with the given exact number of nodes.
///
/// # Arguments
///
/// * `n` - The number of nodes to allocate.
pub fn reset(&mut self, n: usize) {
self.k.replace(n);
self.nodes = Nodes::allocated(n);
self.edges.clear();
}
/// Get the number of nodes.
///
/// # Return
///
/// The number of nodes.
pub fn num_nodes(&self) -> usize {
self.nodes.len()
}
/// Get the number of edges.
///
/// # Return
///
/// The number of edges.
pub fn num_edges(&self) -> usize {
self.edges.len()
}
/// Get the number of connected components.
///
/// # Return
///
/// The number connected components.
pub fn num_components(&self) -> usize {
self.k.get()
}
/// Merge two pixels (that is merge two nodes).
///
/// # Arguments
///
/// * `s_n` - The first node.
/// * `s_m` - The second node.
/// * `e` - The corresponding edge.
///
/// # Remarks
///
/// Depending on the used "Distance", some lines may be commented out
/// to speed up the algorithm.
pub fn merge(&self, s_n: &mut ImageNode, s_m: &mut ImageNode, e: &ImageEdge) {
s_m.label = s_n.id;
// Update count.
s_n.n += s_m.n;
// Update maximum weight.
s_n.max_w = s_n.max_w.max(s_m.max_w).max(e.w);
// Update component count.
let new_k = self.k.get() - 1;
self.k.replace(new_k);
}
/// Get a reference to the n-th node.
///
/// # Arguments
///
/// * `n` - The index of the node.
///
/// # Return
///
/// The node at index `n`.
pub fn node_at(&self, n: usize) -> &RefCell<ImageNode> {
self.nodes.at(n)
}
/// Get the ID of the n-th node.
///
/// # Arguments
///
/// * `n` - The index of the node.
///
/// # Return
///
/// The ID of the node at index `n`.
pub fn node_id_at(&self, n: usize) -> usize {
self.nodes.at(n).borrow().id
}
/// Gets a reference to the n-th edge.
///
/// # Arguments
///
/// * `n` - The index of the edge.
///
/// # Return
///
/// The edge at index `n`.
pub fn edge_at(&self, n: usize) -> &RefCell<ImageEdge> {
self.edges.at(n)
}
/// When two nodes get merged, the first node is assigned the id of the second
/// node as label. By traversing this labeling, the current component of each
/// node (that is, pixel) can easily be identified and the label can be updated
/// for efficiency.
///
/// # Arguments
///
/// * `index` - The index of the node to find the component for.
///
/// # Returns
///
/// The node representing the found component.
pub fn find_node_component_at(&self, index: usize) -> usize {
self.nodes.find_component_at(index)
}
/// Add new edges.
///
/// # Arguments
///
/// * `edges` - The edges to add.
pub fn add_edges<I>(&mut self, edges: I)
where
I: Iterator<Item = ImageEdge>,
{
self.edges.add_many(edges)
}
/// Removes all edges.
pub fn clear_edges(&mut self) {
self.edges.clear();
}
/// Sorts the edges by weight.
pub fn sort_edges(&mut self) {
self.edges.sort_by_weight()
}
}
impl Nodes {
pub fn allocated(n: usize) -> Self {
let mut nodes = Vec::new();
for _ in 0..n {
nodes.push(RefCell::new(ImageNode::default()));
}
Self { nodes }
}
/// Set the node of the given index.
///
/// # Arguments
///
/// * `n` - The index of the node.
/// * `node` - The node to set.
#[allow(dead_code)]
pub fn set(&mut self, n: usize, node: ImageNode) {
assert!(n < self.nodes.len());
self.nodes[n].replace(node);
}
/// Add a new node.
///
/// # Arguments
///
/// * `node` - The node to add.
#[allow(dead_code)]
pub fn add(&mut self, node: ImageNode) {
self.nodes.push(RefCell::new(node))
}
/// Get a reference to the n-th node.
///
/// # Arguments
///
/// * `n` - The index of the node.
///
/// # Return
///
/// The node at index `n`.
pub fn at(&self, n: usize) -> &RefCell<ImageNode> {
assert!(n < self.nodes.len());
&self.nodes[n]
}
/// When two nodes get merged, the first node is assigned the id of the second
/// node as label. By traversing this labeling, the current component of each
/// node (that is, pixel) can easily be identified and the label can be updated
/// for efficiency.
///
/// # Arguments
///
/// * `index` - The index of the node to find the component for.
///
/// # Returns
///
/// The node representing the found component.
pub fn find_component_at(&self, index: usize) -> usize {
let mut n = self.nodes[index].borrow_mut();
debug_assert_eq!(n.id, index);
if n.label == n.id {
return index;
}
// Get component of node n.
let mut l = n.label;
let mut id = n.id;
while l != id {
let token = self.nodes[l].borrow();
l = token.label;
id = token.id;
}
// If the found component is identical to the originally provided index, we must not borrow again.
debug_assert_ne!(l, index);
let s = self.nodes[l].borrow_mut();
debug_assert_eq!(s.label, s.id);
// Save latest component.
n.label = s.id;
l
}
/// Returns the number of nodes.
pub fn len(&self) -> usize {
self.nodes.len()
}
}
impl Edges {
/// Add a new edge.
///
/// # Arguments
///
/// * `edge` - The edge to add.
pub fn add(&mut self, edge: ImageEdge) {
self.edges.push(RefCell::new(edge))
}
/// Add new edges.
///
/// # Arguments
///
/// * `edges` - The edges to add.
pub fn add_many<I>(&mut self, edges: I)
where
I: Iterator<Item = ImageEdge>,
{
for edge in edges.into_iter() {
self.add(edge);
}
}
/// Gets a reference to the n-th edge.
///
/// # Arguments
///
/// * `n` - The index of the edge.
///
/// # Return
///
/// The edge at index `n`.
pub fn at(&self, n: usize) -> &RefCell<ImageEdge> {
assert!(n < self.edges.len());
&self.edges[n]
}
/// Sorts the edges by weight.
pub fn sort_by_weight(&mut self) {
self.edges
.sort_by(|a, b| {
let a = a.borrow();
let b = b.borrow();
// Main sorting is by edge weight ascending.
// In order to improve cache coherency during processing, we then sort by index.
let ord_w = a.w.partial_cmp(&b.w).unwrap();
let ord_n = a.n.partial_cmp(&b.n).unwrap();
let ord_m = a.m.partial_cmp(&b.m).unwrap();
ord_w.then(ord_n).then(ord_m)
});
}
/// Removes all edges.
pub fn clear(&mut self) {
self.edges.clear()
}
/// Returns the number of edges.
pub fn len(&self) -> usize {
self.edges.len()
}
}