1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
//! This module defines the [`Lexer`] and [`Token`] traits that lay the
//! groundwork for parsing with Gramatika. In this documentation, we'll look at
//! some less trivial `Token` examples and explore how the generated lexer
//! tokenizes input.
//!
//! ## Defining a token
//!
//! Each variant of your `Token` enum should be a tuple variant wrapping a
//! [`Substr`] and [`Span`]:
//! ```
//! #[macro_use]
//! extern crate gramatika;
//!
//! # fn main() {
//! use gramatika::{Span, Substr};
//!
//! #[derive(Token, Lexer, PartialEq)]
//! enum Token {
//! # #[discard]
//! # #[pattern = "//.*"]
//! # LineComment(Substr, Span),
//! #
//! # #[discard]
//! # #[multiline]
//! # #[pattern = r"/\*.*?\*/"]
//! # BlockComment(Substr, Span),
//! #
//! # #[subset_of(Ident)]
//! # #[pattern = "if|else|switch|case|break|for|while|var|print"]
//! # Keyword(Substr, Span),
//! #
//! # #[pattern = "[a-zA-Z_][a-zA-Z_0-9]*"]
//! Ident(Substr, Span),
//! #
//! # #[pattern = r"[(){}\[\]]"]
//! # Brace(Substr, Span),
//! #
//! # #[pattern = "[,.;]"]
//! # Punct(Substr, Span),
//! #
//! # #[pattern = "[=!<>]=?"]
//! # #[pattern = "[-+*/]"]
//! # Operator(Substr, Span),
//! #
//! # #[pattern = "(0[xb])?[0-9A-Fa-f][0-9A-Fa-f.]*"]
//! # NumLiteral(Substr, Span),
//! #
//! # #[pattern = r#""[^"]+""#]
//! # StrLiteral(Substr, Span),
//! }
//! # }
//! ```
//! * The [`Substr`] portion (which we'll refer to as the _lexeme_) is an atomic
//! reference-counted view into the original source string, provided by the
//! [`arcstr`] crate. These can be `clone`d for very little cost, because only
//! the pointer to the original string is copied, not the underlying string
//! itself.
//!
//! ```
//! # use gramatika::{ArcStr, Substr};
//! let source = ArcStr::from("foo bar baz");
//! {
//! let foo = source.substr(..3);
//! let baz = source.substr(8..);
//!
//! assert_eq!(foo, "foo");
//! assert_eq!(baz, "baz");
//! assert!(ArcStr::ptr_eq(foo.parent(), baz.parent()));
//! assert_eq!(ArcStr::strong_count(&source), Some(3));
//! }
//! assert_eq!(ArcStr::strong_count(&source), Some(1));
//! ```
//!
//! * The [`Span`] indicates the token's location in the original source
//! document by line and character number.
//!
//! It's important to note that while the actual values stored in the `Span`
//! are zero-indexed, printing the `Span` with the `Debug` trait will display
//! _one-indexed_ values to match the conventions of most code and text
//! editors.
//!
//! ```
//! # use gramatika::Span;
//! let span = Span::new((0, 0), (0, 4));
//! let printed = format!("{span:?}");
//! assert_eq!(printed, "1:1..1:5");
//! ```
//!
//! When the `Token` and [`Spanned`] traits are in scope, the lexeme and span
//! can be extracted from a `Token` without needing to pattern-match. You can
//! also grab them both in one go with the generated `as_inner` method.
//!
//! ```
//! #[macro_use]
//! extern crate gramatika;
//!
//! # fn main() {
//! use gramatika::{Span, Spanned, Substr, Token as _, span};
//!
//! #[derive(Token, Lexer, PartialEq)]
//! enum Token {
//! Ident(Substr, Span),
//! }
//!
//! let my_ident = Token::Ident("foo".into(), span![1:1..1:4]);
//!
//! assert_eq!(my_ident.lexeme(), "foo");
//! assert_eq!(my_ident.span(), span![1:1..1:4]);
//!
//! let (lexeme, span) = my_ident.as_inner();
//! assert_eq!(lexeme, my_ident.lexeme());
//! assert_eq!(span, my_ident.span());
//! # }
//! ```
//!
//! ### Debug and Display
//!
//! It's a good idea to derive [`DebugLispToken`] for the enum, and implement
//! both [`Debug`](core::fmt::Debug) and [`Display`](core::fmt::Display):
//!
//! ```
//! #[macro_use]
//! extern crate gramatika;
//!
//! # fn main() {
//! use core::fmt;
//! use gramatika::{Span, Spanned, Substr, Token as _, span};
//!
//! #[derive(Token, Lexer, DebugLispToken, PartialEq)]
//! enum Token {
//! Ident(Substr, Span),
//! }
//!
//! impl fmt::Display for Token {
//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! write!(f, "{}", self.lexeme())
//! }
//! }
//!
//! impl fmt::Debug for Token {
//! fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! <Self as gramatika::DebugLisp>::fmt(self, f, 0)
//! }
//! }
//!
//! let my_ident = Token::Ident("foo".into(), span![1:1..1:4]);
//!
//! let display = format!("{my_ident}");
//! assert_eq!(display, "foo");
//!
//! let debug = format!("{my_ident:?}");
//! assert_eq!(debug, "`foo` (Ident (1:1..1:4))");
//! # }
//! ```
//! [`DebugLispToken`]: gramatika_macro::DebugLispToken
//!
//! ## Configuring the Lexer
//!
//! The real power of Gramatika comes from its lexer generator. Let's define a
//! pattern for our identifier token:
//!
//! ```
//! # #[macro_use]
//! # extern crate gramatika;
//! #
//! # fn main() {
//! # use core::fmt;
//! # use gramatika::{Span, Spanned, Substr, Token as _, span};
//! #
//! // ...
//! #[derive(Token, Lexer, DebugLispToken, PartialEq)]
//! enum Token {
//! #[pattern = "[a-zA-Z_][a-zA-Z_0-9]*"]
//! Ident(Substr, Span),
//! }
//! #
//! # impl fmt::Display for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # write!(f, "{}", self.lexeme())
//! # }
//! # }
//! #
//! # impl fmt::Debug for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # <Self as gramatika::DebugLisp>::fmt(self, f, 0)
//! # }
//! # }
//!
//! let input = "
//! foo bar baz
//! foobar
//! loremIpsum
//! dolor_sit_amet
//! ";
//! let mut lexer = Lexer::new(input.into());
//! let tokens = lexer.scan();
//!
//! assert_eq!(tokens.len(), 6);
//! assert_eq!(&tokens[0], &Token::Ident("foo".into(), span![2:5..2:8]));
//! assert_eq!(&tokens[5], &Token::Ident("dolor_sit_amet".into(), span![5:5..5:19]));
//! # }
//! ```
//!
//! The `#[pattern]` attribute accepts the same syntax and features as the Rust
//! [`regex` crate]. Those patterns are compiled to [deterministic finite automata]
//! and used by the generated lexer to find token matches in an input string.
//!
//! [`regex` crate]: https://docs.rs/regex/latest/regex/
//! [deterministic finite automata]: https://swtch.com/~rsc/regexp/regexp1.html
//!
//! ### Unrecognized input
//!
//! If the lexer receives any input that it doesn't know how to handle, it
//! panics. That's not ideal, so to avoid that we'll define a catch-all
//! `Unrecognized` token that eats up all non-whitespace characters. Our
//! [`Parse`] implementations can then handle those gracefully by emitting a
//! useful error message for the user.
//!
//! [`Parse`]: crate::Parse
//!
//! ```
//! # #[macro_use]
//! # extern crate gramatika;
//! #
//! # fn main() {
//! # use core::fmt;
//! # use gramatika::{Span, Spanned, Substr, Token as _, span};
//! #
//! // ...
//! #[derive(Token, Lexer, DebugLispToken, PartialEq)]
//! enum Token {
//! #[pattern = "[a-zA-Z_][a-zA-Z_0-9]*"]
//! Ident(Substr, Span),
//!
//! #[pattern = r"\S+"]
//! Unrecognized(Substr, Span),
//! }
//! #
//! # impl fmt::Display for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # write!(f, "{}", self.lexeme())
//! # }
//! # }
//! #
//! # impl fmt::Debug for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # <Self as gramatika::DebugLisp>::fmt(self, f, 0)
//! # }
//! # }
//!
//! let input = "foo 42";
//! let mut lexer = Lexer::new(input.into());
//! let tokens = lexer.scan();
//!
//! assert_eq!(tokens.len(), 2);
//! assert_eq!(&tokens[0], &Token::Ident("foo".into(), span![1:1..1:4]));
//! assert_eq!(&tokens[1], &Token::Unrecognized("42".into(), span![1:5..1:7]));
//! # }
//! ```
//!
//! ### Discarding input
//!
//! Often we want to _recognize_ some input, especially input that might be
//! valid at any location in a source file, without needing to manually deal
//! with those tokens in our [`Parse`] implementations. Essentially, we want to
//! _discard_ that input. The lexer automatically does thie by default for
//! whitespace characters, but we can expand that functionality to any other
//! syntax that we want to ignore completely:
//!
//! ```
//! # #[macro_use]
//! # extern crate gramatika;
//! #
//! # fn main() {
//! # use core::fmt;
//! # use gramatika::{Span, Spanned, Substr, Token as _, span};
//! #
//! // ...
//! #[derive(Token, Lexer, DebugLispToken, PartialEq)]
//! enum Token {
//! #[discard]
//! #[pattern = "//.*"]
//! Comment(Substr, Span),
//! // ...
//! # #[pattern = "[a-zA-Z_][a-zA-Z_0-9]*"]
//! # Ident(Substr, Span),
//! # #[pattern = r"\S+"]
//! # Unrecognized(Substr, Span),
//! }
//! #
//! # impl fmt::Display for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # write!(f, "{}", self.lexeme())
//! # }
//! # }
//! #
//! # impl fmt::Debug for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # <Self as gramatika::DebugLisp>::fmt(self, f, 0)
//! # }
//! # }
//!
//! let input = "
//! // Here's a comment
//! foo // Here's another one
//! ";
//!
//! let mut lexer = Lexer::new(input.into());
//! let tokens = lexer.scan();
//!
//! assert_eq!(tokens.len(), 1);
//! assert_eq!(&tokens[0], &Token::Ident("foo".into(), span![3:5..3:8]));
//! # }
//! ```
//!
//! ### Matching tokens across multiple lines
//!
//! We may also want to define some tokens that can span multiple lines, but by
//! default a regular expression's `.` doesn't match newline characters. We can
//! change that by adding the `#[multiline]` attribute:
//!
//! ```
//! # #[macro_use]
//! # extern crate gramatika;
//! #
//! # fn main() {
//! # use core::fmt;
//! # use gramatika::{Span, Spanned, Substr, Token as _, span};
//! #
//! // ...
//! #[derive(Token, Lexer, DebugLispToken, PartialEq)]
//! enum Token {
//! #[discard]
//! #[multiline]
//! #[pattern = r"/\*.*?\*/"]
//! BlockComment(Substr, Span),
//!
//! #[discard]
//! #[pattern = "//.*"]
//! LineComment(Substr, Span),
//! // ...
//! # #[pattern = "[a-zA-Z_][a-zA-Z_0-9]*"]
//! # Ident(Substr, Span),
//! # #[pattern = r"\S+"]
//! # Unrecognized(Substr, Span),
//! }
//! #
//! # impl fmt::Display for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # write!(f, "{}", self.lexeme())
//! # }
//! # }
//! #
//! # impl fmt::Debug for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # <Self as gramatika::DebugLisp>::fmt(self, f, 0)
//! # }
//! # }
//!
//! let input = "
//! /*
//! Here's a block comment.
//! It can span as many lines as we please!
//! */
//! foo // Here's a line comment
//! ";
//!
//! let mut lexer = Lexer::new(input.into());
//! let tokens = lexer.scan();
//!
//! assert_eq!(tokens.len(), 1);
//! assert_eq!(&tokens[0], &Token::Ident("foo".into(), span![6:5..6:8]));
//! # }
//! ```
//! ### Matching keywords
//!
//! Keywords are a tricky thing, because they will almost certainly overlap with
//! your language's "identifier" token. The matching of tokens is prioritized by
//! declaration order from top to bottom, so you might think we could just
//! declare our `Keyword` token first, but that has an unfortunate consequence:
//!
//! ```
//! # #[macro_use]
//! # extern crate gramatika;
//! #
//! # fn main() {
//! # use core::fmt;
//! # use gramatika::{Span, Spanned, Substr, Token as _, span};
//! #
//! // ...
//! #[derive(Token, Lexer, DebugLispToken, PartialEq)]
//! enum Token {
//! #[pattern = "if|else|for|in|switch|case|break"]
//! Keyword(Substr, Span),
//!
//! #[pattern = "[a-zA-Z_][a-zA-Z_0-9]*"]
//! Ident(Substr, Span),
//! #
//! # #[pattern = r"\S+"]
//! # Unrecognized(Substr, Span),
//! }
//! #
//! # impl fmt::Display for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # write!(f, "{}", self.lexeme())
//! # }
//! # }
//! #
//! # impl fmt::Debug for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # <Self as gramatika::DebugLisp>::fmt(self, f, 0)
//! # }
//! # }
//!
//! let input = "
//! for foo in bar
//! intent
//! ";
//!
//! let mut lexer = Lexer::new(input.into());
//! let tokens = lexer.scan();
//!
//! assert_eq!(tokens, vec![
//! Token::Keyword("for".into(), span![2:5..2:8]),
//! Token::Ident("foo".into(), span![2:9..2:12]),
//! Token::Keyword("in".into(), span![2:13..2:15]),
//! Token::Ident("bar".into(), span![2:16..2:19]),
//! // Wait a minute, this is not what we wanted!
//! Token::Keyword("in".into(), span![3:9..3:11]),
//! Token::Ident("tent".into(), span![3:11..3:15]),
//! ]);
//! # }
//! ```
//!
//! To fix that, we can use the `#[subset_of(Other)]` attribute to specify that
//! a token's pattern overlaps with `Other`'s pattern, and should only match if
//! `Other`'s _entire lexeme_ is _also_ a match for the subset.
//!
//! ```
//! # #[macro_use]
//! # extern crate gramatika;
//! #
//! # fn main() {
//! # use core::fmt;
//! # use gramatika::{Span, Spanned, Substr, Token as _, span};
//! #
//! // ...
//! #[derive(Token, Lexer, DebugLispToken, PartialEq)]
//! enum Token {
//! #[subset_of(Ident)]
//! #[pattern = "if|else|for|in|switch|case|break"]
//! Keyword(Substr, Span),
//!
//! #[pattern = "[a-zA-Z_][a-zA-Z_0-9]*"]
//! Ident(Substr, Span),
//! #
//! # #[pattern = r"\S+"]
//! # Unrecognized(Substr, Span),
//! }
//! #
//! # impl fmt::Display for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # write!(f, "{}", self.lexeme())
//! # }
//! # }
//! #
//! # impl fmt::Debug for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # <Self as gramatika::DebugLisp>::fmt(self, f, 0)
//! # }
//! # }
//!
//! let input = "
//! for foo in bar
//! intent
//! ";
//!
//! let mut lexer = Lexer::new(input.into());
//! let tokens = lexer.scan();
//!
//! assert_eq!(tokens, vec![
//! Token::Keyword("for".into(), span![2:5..2:8]),
//! Token::Ident("foo".into(), span![2:9..2:12]),
//! Token::Keyword("in".into(), span![2:13..2:15]),
//! Token::Ident("bar".into(), span![2:16..2:19]),
//! // That's better!
//! Token::Ident("intent".into(), span![3:9..3:15]),
//! ]);
//! # }
//! ```
//!
//! ### Composing complex patterns
//!
//! Regular expressions are not known for their readability in the best of
//! circumstances, but that's especially true for long patterns with lots of
//! "or" branches. We can define multiple `#[pattern]` attributes for a single
//! token to _compose_ those patterns into a single regular expression:
//!
//! ```
//! # #[macro_use]
//! # extern crate gramatika;
//! #
//! # fn main() {
//! # use core::fmt;
//! # use gramatika::{Span, Spanned, Substr, Token as _, span};
//! #
//! // ...
//! #[derive(Token, Lexer, DebugLispToken, PartialEq)]
//! enum Token {
//! #[pattern = r"[0-9]*\.[0-9]+"]
//! #[pattern = r"[0-9]+\.[0-9]*"]
//! FloatLiteral(Substr, Span),
//! #
//! # #[pattern = r"\S+"]
//! # Unrecognized(Substr, Span),
//! }
//! #
//! # impl fmt::Display for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # write!(f, "{}", self.lexeme())
//! # }
//! # }
//! #
//! # impl fmt::Debug for Token {
//! # fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
//! # <Self as gramatika::DebugLisp>::fmt(self, f, 0)
//! # }
//! # }
//!
//! let input = "
//! 3.141
//! .25
//! 50.
//! ";
//!
//! let mut lexer = Lexer::new(input.into());
//! let tokens = lexer.scan();
//!
//! assert_eq!(tokens, vec![
//! Token::FloatLiteral("3.141".into(), span![2:5..2:10]),
//! Token::FloatLiteral(".25".into(), span![3:5..3:8]),
//! Token::FloatLiteral("50.".into(), span![4:5..4:8]),
//! ]);
//! # }
//! ```
//! The pattern above is exactly equivalent to `[0-9]*\.[0-9]+|[0-9]+\.[0-9]*`,
//! but by putting them on separate lines we can more easily tell the difference
//! between them (the first makes the digits _before_ the `.` optional, while
//! the second does the same for digits _after_ the `.`).
//!
use std::fmt;
use arcstr::{ArcStr, Substr};
use crate::{Span, Spanned};
/// A lexer (AKA scanner, AKA tokenizer) is the piece of the parsing toolchain
/// that takes raw input (e.g., the text of a source file) and "scans" it into
/// discrete chunks of meaningful information (i.e., [tokens]).
///
/// In Gramatika, [parsing] is usually performed on a stream of tokens that are
/// scanned on-demand by a compile-time-generated type implementing this trait.
/// Except perhaps for unit-testing, you should rarely need to interact with the
/// lexer directly.
///
/// [tokens]: crate::Token
/// [parsing]: crate::parse
pub trait Lexer {
/// The concrete type of [`Token`] this lexer should scan.
type Output: Token;
/// Create a new lexer that can scan the provided `input` to a stream of
/// [`Output`] tokens.
///
/// [`Output`]: Lexer::Output
fn new(input: ArcStr) -> Self;
/// Experimental
#[doc(hidden)]
#[allow(unused_variables)]
fn with_runtime_matcher<F>(self, matcher: F) -> Self
where
Self: Sized,
F: Fn(&str) -> Option<(usize, <Self::Output as Token>::Kind)> + 'static,
{
self
}
/// Returns an owned copy of the input [`ArcStr`] this lexer is scanning.
fn source(&self) -> ArcStr;
/// Scans a single token from the input.
///
/// The implementation generated by the [`derive macro`] does this lazily,
/// only checking the input for a match when this method is called, and
/// stopping as soon as the first match is (or isn't) found.
///
/// [`derive macro`]: gramatika_macro::Lexer
fn scan_token(&mut self) -> Option<Self::Output>;
/// Eagerly scans the entire input to an array of tokens.
///
/// Most of the time you'll want to use [`scan_token`] instead to _stream_
/// tokens from the input on an as-needed basis.
///
/// [`scan_token`]: Lexer::scan_token
fn scan(&mut self) -> Vec<Self::Output> {
let mut result = vec![];
while let Some(token) = self.scan_token() {
result.push(token);
}
result
}
}
/// In the parlance of language parsing, "tokens" are the smallest discrete
/// chunks of meaningful information that can be extracted from some raw input,
/// like the text of a source file.
///
/// If the individual characters of that text are thought of as _atoms_, then
/// its "tokens" could be considered the _molecules_: words, punctuation marks,
/// mathematical operators, etc.
///
/// In Gramatika, this trait is usually [derived] (along with its [`Lexer`]) for
/// some user-defined enum type, with regular-expression patterns specifying
/// the forms that can be taken by each of its variants. See the
/// [module-level documentation] for (much) more detail.
///
/// [derived]: gramatika_macro::Token
/// [module-level documentation]: crate::lexer
pub trait Token
where Self: Clone + Spanned
{
type Kind: fmt::Debug + PartialEq;
/// Returns the actual text content of a token.
///
/// ```
/// #[macro_use]
/// extern crate gramatika;
///
/// use gramatika::{
/// arcstr::literal_substr,
/// Substr, Span, Token as _,
/// };
///
/// # fn main() {
/// #[derive(Token, Lexer)]
/// enum Token {
/// #[subset_of(Ident)]
/// #[pattern = "var"]
/// Keyword(Substr, Span),
///
/// #[pattern = "[a-zA-Z_][a-zA-Z0-9_]*"]
/// Ident(Substr, Span),
///
/// #[pattern = "[0-9]+"]
/// IntLiteral(Substr, Span),
///
/// #[pattern = "="]
/// Operator(Substr, Span),
///
/// #[pattern = ";"]
/// Punct(Substr, Span),
/// }
///
/// let src = "var the_answer = 42;";
/// let tokens = Lexer::new(src.into()).scan();
///
/// assert_eq!(tokens[1].lexeme(), literal_substr!("the_answer"));
/// # }
/// ```
fn lexeme(&self) -> Substr;
/// Returns the [`Kind`] of this token. Used in [`ParseStreamer`] methods like
/// [`check_kind`] and [`consume_kind`]. Effectively a more user-friendly version of
/// [`std::mem::discriminant`].
///
/// [`Kind`]: Token::Kind
/// [`ParseStreamer`]: crate::parse::ParseStreamer
/// [`check_kind`]: crate::parse::ParseStreamer::check_kind
/// [`consume_kind`]: crate::parse::ParseStreamer::consume_kind
///
/// ```
/// #[macro_use]
/// extern crate gramatika;
///
/// use gramatika::{Substr, Span, Token as _};
///
/// # fn main() {
/// #[derive(Token, Lexer)]
/// enum Token {
/// #[pattern = "[a-zA-Z_][a-zA-Z0-9_]*"]
/// Ident(Substr, Span),
/// }
///
/// let input = "foo";
/// let token = Lexer::new(input.into())
/// .scan_token()
/// .expect("Expected to match Ident `foo`");
///
/// assert_eq!(token.kind(), TokenKind::Ident);
/// # }
/// ```
fn kind(&self) -> Self::Kind;
/// Decomposes the token into its constituent [`Kind`], [`lexeme`] and
/// [`Span`]) parts, with the `lexeme` as a [`&str`] slice for compatibility
/// with pattern matching.
///
/// [`Kind`]: Token::Kind
/// [`lexeme`]: Token::lexeme
/// [`span`]: crate::Span
/// [`&str`]: prim@str
///
/// ```
/// #[macro_use]
/// extern crate gramatika;
///
/// use gramatika::{Substr, Span, Token as _};
///
/// # fn main() {
/// #[derive(Token, Lexer)]
/// enum Token {
/// #[pattern = "[a-zA-Z_][a-zA-Z0-9_]*"]
/// Ident(Substr, Span),
/// }
///
/// let input = "foo";
/// let token = Lexer::new(input.into())
/// .scan_token()
/// .expect("Expected to match Ident `foo`");
///
/// assert!(matches!(token.as_matchable(), (TokenKind::Ident, "foo", _)));
/// # }
/// ```
fn as_matchable(&self) -> (Self::Kind, &str, Span);
}