1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
use crate::glsl::*; use crate::uses::{math::*, *}; use crate::GL::{mesh::*, *}; pub struct EnvTex { pub mip_levels: f32, pub specular: CubeTex<RGB, f16>, pub irradiance: CubeTex<RGB, f16>, } impl<T: Borrow<Environment>> From<T> for EnvTex { fn from(e: T) -> Self { let e = e.borrow(); let specular = CubeTex::from(&e.specular); let irradiance = (&e.diffuse).into(); let mip_levels = f32::to(specular.param.l); Self { mip_levels, specular, irradiance } } } #[derive(Default, Serialize, Deserialize)] pub struct Environment { specular: Vec<[fImage<RGB>; 6]>, diffuse: [fImage<RGB>; 6], } impl Environment { pub fn new_cached(name: &str) -> Res<Self> { let cache = &CONCAT![name, ".hdr.z"]; if let Ok(d) = FS::Load::Archive(cache) { if let Ok(env) = SERDE::FromVec(&d) { return Ok(env); } } let env: Res<_> = (|| { let file = FS::Load::File(CONCAT!["res/", name, ".hdr"])?; let equirect = Tex2d::from(EXPECT!(Image::<RGB, f32>::new(file))); let env = Self::new(equirect); let v = EXPECT!(SERDE::ToVec(&env)); FS::Save::Archive((cache, v)); Ok(env) })(); env } pub fn lut_cached() -> Tex2d<RG, f16> { let cache = "brdf_lut.pbrt.z"; if let Ok(d) = FS::Load::Archive(cache) { if let Ok(lut) = SERDE::FromVec(&d) { return fImage::into(lut); } } let lut = Self::lut(); let v = EXPECT!(SERDE::ToVec(&lut)); FS::Save::Archive((cache, v)); lut.into() } pub fn lut() -> fImage<RG> { let mut lut = EXPECT!(Shader::new((mesh__2d_screen_vs, env__gen_lut_ps))); let mut surf = Fbo::<RGBA, f32>::new((512, 512)); { Screen::Prepare(); let _ = Uniforms!(lut, ("samples", 4096)); surf.bind(); Screen::Draw(); } surf.tex.into() } pub fn new<S, F>(equirect: Tex2d<S, F>) -> Self { Screen::Prepare(); let VP_mats = { use glm::vec3; let s = |to, up| glm::look_at(&vec3(0., 0., 0.), &to, &up); let proj = glm::perspective(1., 90_f32.to_radians(), 0.1, 10.); vec![ s(vec3(1., 0., 0.), vec3(0., -1., 0.)), s(vec3(-1., 0., 0.), vec3(0., -1., 0.)), s(vec3(0., 1., 0.), vec3(0., 0., 1.)), s(vec3(0., -1., 0.), vec3(0., 0., -1.)), s(vec3(0., 0., 1.), vec3(0., -1., 0.)), s(vec3(0., 0., -1.), vec3(0., -1., 0.)), ] .into_iter() .map(|side| Camera::new(proj, side).VP()) .collect::<Vec<_>>() }; let sampl = &Sampler::linear(); let mut equirect_shd = EXPECT!(Shader::new((env__gen_vs, env__unwrap_equirect_ps))); let mut irradiance_shd = EXPECT!(Shader::new((env__gen_vs, env__gen_irradiance_ps))); let mut specular_shd = EXPECT!(Shader::new((env__gen_vs, env__gen_spec_ps))); let color: [_; 6] = VP_mats .iter() .map(|cam| { let e = equirect.Bind(sampl); let _ = Uniforms!(equirect_shd, ("equirect_tex", &e), ("MVPMat", *cam)); let mut surf = Fbo::<RGBA, f32>::new((512, 512)); surf.bind(); Skybox::Draw(); fImage::<RGB>::from(surf.tex) }) .collect::<Vec<_>>() .try_into() .unwrap(); let cubemap = CubeTex::from(&color); let diffuse: [_; 6] = VP_mats .iter() .map(|cam| { let e = cubemap.Bind(sampl); let _ = Uniforms!(irradiance_shd, ("env_cubetex", &e), ("MVPMat", *cam), ("delta", 0.025)); let mut surf = Fbo::<RGBA, f32>::new((64, 64)); surf.bind(); Skybox::Draw(); fImage::<RGB>::from(surf.tex) }) .collect::<Vec<_>>() .try_into() .unwrap(); let mips = TexParam::mip_levels(cubemap.param.w); let specular = vec![color] .into_iter() .chain( (1..mips) .map(|l| { let r = f32::to(l) / f32::to(mips - 1); let wh = cubemap.param.dim_unchecked(u32::to(l)).xy(); let mip: [_; 6] = VP_mats .iter() .map(|cam| { let e = cubemap.Bind(sampl); let _ = Uniforms!(specular_shd, ("env_cubetex", &e), ("MVPMat", *cam), ("samples", 4096), ("roughness", r)); let mut surf = Fbo::<RGBA, f32>::new(wh); surf.bind(); Skybox::Draw(); fImage::<RGB>::from(surf.tex) }) .collect::<Vec<_>>() .try_into() .unwrap(); mip }) .collect::<Vec<_>>() .into_iter(), ) .collect::<Vec<_>>(); Self { diffuse, specular } } } SHADER!( env__gen_vs, r"#version 330 core layout(location = 0)in vec3 Position; uniform mat4 MVPMat; out vec3 glTexCoord; void main() { vec4 pos = vec4(Position, 1.); gl_Position = MVPMat * pos; glTexCoord = Position; }" ); SHADER!( env__unwrap_equirect_ps, r"#version 330 core in vec3 glTexCoord; layout(location = 0)out vec4 glFragColor; uniform sampler2D equirect_tex; void main() { vec3 v = normalize(glTexCoord); vec2 uv = vec2(atan(v.z, v.x), asin(v.y)) * vec2(0.1591, 0.3183) + vec2(0.5); vec3 c = texture(equirect_tex, uv).rgb; glFragColor = vec4(c, 1.); }" ); SHADER!( env__gen_irradiance_ps, r"#version 330 core in vec3 glTexCoord; layout(location = 0)out vec4 glFragColor; uniform samplerCube env_cubetex; uniform float delta; const float M_PI = 3.14159265358979323846; void main() { vec3 normal = normalize(glTexCoord); vec3 right = cross(vec3(0., 1., 0.), normal); vec3 up = cross(normal, right); vec3 irradiance = vec3(0.); float n_samples = 0.; for(float phi=0.; phi<2.*M_PI; phi+=delta) { for(float theta=0.; theta<0.5*M_PI; theta+=delta) { vec3 tangent_sample = vec3(sin(theta) * cos(phi), sin(theta) * sin(phi), cos(theta)); vec3 sample_vec = tangent_sample.x * right + tangent_sample.y * up + tangent_sample.z * normal; irradiance += texture(env_cubetex, sample_vec).rgb * cos(theta) * sin(theta); ++n_samples; } } irradiance = M_PI * irradiance / n_samples; glFragColor = vec4(irradiance, 1.); }" ); const TRANSFORM: Str = r" const float M_PI = 3.14159265358979323846; float RadicalInverse_VdC(uint bits) { bits = (bits << 16u) | (bits >> 16u); bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); return float(bits) * 2.3283064365386963e-10; // / 0x100000000 } vec2 Hammersley(uint i, uint N) { return vec2(float(i)/float(N), RadicalInverse_VdC(i)); } vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness) { float a = roughness * roughness; float phi = 2. * M_PI * Xi.x; float cosTheta = sqrt((1. - Xi.y) / (1. + (a * a - 1.) * Xi.y)); float sinTheta = sqrt(1. - cosTheta * cosTheta); vec3 H = vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta); vec3 up = abs(N.z) < 0.999 ? vec3(0., 0., 1.) : vec3(1., 0., 0.); vec3 tangent = normalize(cross(up, N)); vec3 bitangent = cross(N, tangent); vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z; return normalize(sampleVec); }"; SHADER!( env__gen_spec_ps, r"#version 330 core in vec3 glTexCoord; layout(location = 0)out vec4 glFragColor; uniform samplerCube env_cubetex; uniform float roughness; uniform int samples;", TRANSFORM, r" void main() { vec3 N = normalize(glTexCoord); float totalWeight = 0.; vec3 prefilteredColor = vec3(0.); uint SAMPLE_COUNT = uint(samples); for(uint i=0u; i<SAMPLE_COUNT; ++i) { vec2 Xi = Hammersley(i, SAMPLE_COUNT); vec3 H = ImportanceSampleGGX(Xi, N, roughness); vec3 L = normalize(2. * dot(N, H) * H - N); float NdotL = max(dot(N, L), 0.); if(NdotL > 0.) { prefilteredColor += texture(env_cubetex, L).rgb * NdotL; totalWeight += NdotL; } } prefilteredColor /= totalWeight; glFragColor = vec4(prefilteredColor, 1.); }" ); SHADER!( env__gen_lut_ps, r"#version 330 core in vec2 glTexCoord; layout(location = 0)out vec4 glFragColor; uniform int samples;", TRANSFORM, r" float GeometrySchlickGGX(float NdotV, float roughness) { float k = (roughness * roughness) / 2.; float denom = NdotV * (1. - k) + k; return NdotV / denom; } float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness) { float NdotV = max(dot(N, V), 0.); float NdotL = max(dot(N, L), 0.); float ggx2 = GeometrySchlickGGX(NdotV, roughness); float ggx1 = GeometrySchlickGGX(NdotL, roughness); return ggx1 * ggx2; } vec2 IntegrateBRDF(float NdotV, float roughness) { vec3 V = vec3(sqrt(1. - NdotV * NdotV), 0., NdotV); float A = 0.; float B = 0.; vec3 N = vec3(0., 0., 1.); uint SAMPLE_COUNT = uint(samples); for(uint i=0u; i<SAMPLE_COUNT; ++i) { vec2 Xi = Hammersley(i, SAMPLE_COUNT); vec3 H = ImportanceSampleGGX(Xi, N, roughness); vec3 L = normalize(2. * dot(V, H) * H - V); float NdotL = max(L.z, 0.); if(NdotL > 0.) { float NdotH = max(H.z, 0.); float VdotH = max(dot(V, H), 0.); float G = GeometrySmith(N, V, L, roughness); float G_Vis = (G * VdotH) / (NdotH * NdotV); float Fc = pow(1. - VdotH, 5.); A += (1. - Fc) * G_Vis; B += Fc * G_Vis; } } A /= float(SAMPLE_COUNT); B /= float(SAMPLE_COUNT); return vec2(A, B); } void main() { glFragColor = vec4(IntegrateBRDF(glTexCoord.x, glTexCoord.y), 0., 1.); }" );