Expand description
§Graaf
Build and query digraphs.
§Examples
use {
graaf::{
algo::bfs::single_pair_shortest_path as spsp,
gen::*,
op::*,
repr::*,
},
std::collections::BTreeSet,
};
// 0 -> {1, 2}
// 1 -> {}
// 2 -> {}
let mut digraph = <[BTreeSet<usize>; 3]>::empty();
digraph.add_arc(0, 1);
digraph.add_arc(0, 2);
assert_eq!(digraph.degree(0), 2);
assert_eq!(digraph.degree(1), 1);
assert_eq!(digraph.degree(2), 1);
// 0 -> {1}
// 1 -> {0}
// 2 -> {1}
// 3 -> {0, 2}
let digraph = [Vec::new(), vec![0], vec![1], vec![0, 2]];
assert_eq!(spsp(&digraph, 3, 0), Some(vec![3, 0]));
assert_eq!(spsp(&digraph, 3, 1), Some(vec![3, 2, 1]));
// 0 -> {}
// 1 -> {}
// 2 -> {}
assert!(Vec::<Vec<usize>>::empty(3)
.iter()
.eq(&[Vec::new(), Vec::new(), Vec::new()]));
// 0 -> {1}
// 1 -> {2}
// 2 -> {0}
assert!(Vec::<Vec<usize>>::cycle(3)
.iter()
.eq(&[vec![1], vec![2], vec![0]]));
// 0 -> {1, 2}
// 1 -> {0, 2}
// 2 -> {0, 1}
assert!(<[Vec::<usize>; 3]>::complete()
.iter()
.eq(&[vec![1, 2], vec![0, 2], vec![0, 1]]));
let tournament = Vec::<BTreeSet<usize>>::random_tournament(4);
assert_eq!(tournament.size(), 6);
assert_eq!(tournament.order(), 4);
for s in tournament.iter_vertices() {
assert_eq!(tournament.degree(s), 3);
assert!((0..3).contains(&tournament.outdegree(s)));
assert!((0..3).contains(&tournament.indegree(s)));
}
// 0 -> {1}
// 1 -> {1}
let mut digraph = AdjacencyMatrix::<3>::new();
digraph.add_arc(0, 1);
digraph.add_arc(1, 1);
assert!(!digraph.is_simple());Modules§
- Digraph algorithms
- Digraph generators
- Operations on digraphs
- Cross-module properties and strategies.
- Custom digraph representations