1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
use std::sync::Arc;

use crate::http::bigquery_client::BigqueryClient;
use crate::http::error::Error;
use crate::http::model;
use crate::http::model::list::{ListModelsRequest, ListModelsResponse, ModelOverview};
use crate::http::model::Model;

#[derive(Debug, Clone)]
pub struct BigqueryModelClient {
    inner: Arc<BigqueryClient>,
}

impl BigqueryModelClient {
    pub fn new(inner: Arc<BigqueryClient>) -> Self {
        Self { inner }
    }

    /// https://cloud.google.com/bigquery/docs/reference/rest/v2/models/delete
    #[cfg_attr(feature = "trace", tracing::instrument(skip_all))]
    pub async fn delete(&self, project_id: &str, dataset_id: &str, table_id: &str) -> Result<(), Error> {
        let builder = model::delete::build(self.inner.endpoint(), self.inner.http(), project_id, dataset_id, table_id);
        self.inner.send_get_empty(builder).await
    }

    /// https://cloud.google.com/bigquery/docs/reference/rest/v2/models/patch
    #[cfg_attr(feature = "trace", tracing::instrument(skip_all))]
    pub async fn patch(&self, metadata: &Model) -> Result<Model, Error> {
        let builder = model::patch::build(self.inner.endpoint(), self.inner.http(), metadata);
        self.inner.send(builder).await
    }

    /// https://cloud.google.com/bigquery/docs/reference/rest/v2/models/get
    #[cfg_attr(feature = "trace", tracing::instrument(skip_all))]
    pub async fn get(&self, project_id: &str, dataset_id: &str, model_id: &str) -> Result<Model, Error> {
        let builder = model::get::build(self.inner.endpoint(), self.inner.http(), project_id, dataset_id, model_id);
        self.inner.send(builder).await
    }

    /// https://cloud.google.com/bigquery/docs/reference/rest/v2/models/list
    #[cfg_attr(feature = "trace", tracing::instrument(skip_all))]
    pub async fn list(
        &self,
        project_id: &str,
        dataset_id: &str,
        req: &ListModelsRequest,
    ) -> Result<Vec<ModelOverview>, Error> {
        let mut page_token: Option<String> = None;
        let mut models = vec![];
        loop {
            let builder = model::list::build(
                self.inner.endpoint(),
                self.inner.http(),
                project_id,
                dataset_id,
                req,
                page_token,
            );
            let response: ListModelsResponse = self.inner.send(builder).await?;
            models.extend(response.models);
            if response.next_page_token.is_none() {
                break;
            }
            page_token = response.next_page_token;
        }
        Ok(models)
    }
}

#[cfg(test)]
mod test {
    use std::sync::Arc;

    use serial_test::serial;
    use time::OffsetDateTime;

    use crate::http::bigquery_client::test::create_client;
    use crate::http::bigquery_job_client::BigqueryJobClient;
    use crate::http::bigquery_model_client::BigqueryModelClient;
    use crate::http::job::get::GetJobRequest;
    use crate::http::job::query::QueryRequest;
    use crate::http::job::{Job, JobConfiguration, JobConfigurationQuery, JobState, JobType};
    use crate::http::model::list::ListModelsRequest;
    use crate::http::model::ModelType;

    #[ctor::ctor]
    fn init() {
        let _ = tracing_subscriber::fmt::try_init();
    }

    #[tokio::test]
    #[serial]
    pub async fn crud_model() {
        let (client, project) = create_client().await;
        let job_client = BigqueryJobClient::new(Arc::new(client.clone()));
        let client = BigqueryModelClient::new(Arc::new(client));

        // create model
        let model_id = format!("penguins_model_{}", OffsetDateTime::now_utc().unix_timestamp());
        let mut job1 = Job::default();
        job1.job_reference.job_id = format!("rust_test_model_job_{}", OffsetDateTime::now_utc().unix_timestamp());
        job1.job_reference.project_id = project.to_string();
        job1.job_reference.location = Some("US".to_string());
        job1.configuration = JobConfiguration {
            job: JobType::Query(JobConfigurationQuery {
                use_legacy_sql: Some(false),
                query: format!(
                    "
                    CREATE OR REPLACE MODEL `rust_test_model_us.{}`
                    OPTIONS (model_type='linear_reg', input_label_cols=['body_mass_g']) AS
                        SELECT
                            *
                        FROM
                            `bigquery-public-data.ml_datasets.penguins`
                        WHERE
                            body_mass_g IS NOT NULL
                        LIMIT 100
                    ",
                    model_id
                ),
                ..Default::default()
            }),
            ..Default::default()
        };
        let mut job = job_client.create(&job1).await.unwrap();

        // wait for training complete
        let elapsed = 0;
        loop {
            if job.status.state == JobState::Done {
                break;
            }
            let jr = &job.job_reference;
            job = job_client
                .get(&jr.project_id, &jr.job_id, &GetJobRequest { location: None })
                .await
                .unwrap();
            tokio::time::sleep(tokio::time::Duration::from_secs(3)).await;
            tracing::info!("current job status.state = {:?}", job.status.state);
            assert!(elapsed < 20, "model creation timedout");
        }

        // predict
        let result = job_client
            .query(
                &project,
                &QueryRequest {
                    max_results: None,
                    query: format!(
                        "
                    SELECT * FROM  ML.PREDICT(MODEL `rust_test_model_us.{}`, (
                        SELECT
                            *
                        FROM
                            `bigquery-public-data.ml_datasets.penguins`
                        WHERE
                            body_mass_g IS NOT NULL
                        AND island = 'Biscoe' LIMIT 10))
                    ",
                        model_id
                    ),
                    ..Default::default()
                },
            )
            .await
            .unwrap();
        assert_eq!(result.total_rows.unwrap(), 10);

        // list / get / patch / delete
        let models = client
            .list(&project, "rust_test_model_us", &ListModelsRequest::default())
            .await
            .unwrap();
        assert!(!models.is_empty());

        for model in models {
            let model = model.model_reference;
            let model = client
                .get(model.project_id.as_str(), model.dataset_id.as_str(), model.model_id.as_str())
                .await
                .unwrap();
            assert_eq!(model.model_type.clone().unwrap(), ModelType::LinearRegression);
            let model = &client.patch(&model).await.unwrap().model_reference;
            client
                .delete(model.project_id.as_str(), model.dataset_id.as_str(), model.model_id.as_str())
                .await
                .unwrap();
        }
    }
}