godot_core/builtin/collections/array.rs
1/*
2 * Copyright (c) godot-rust; Bromeon and contributors.
3 * This Source Code Form is subject to the terms of the Mozilla Public
4 * License, v. 2.0. If a copy of the MPL was not distributed with this
5 * file, You can obtain one at https://mozilla.org/MPL/2.0/.
6 */
7
8use std::cell::OnceCell;
9use std::marker::PhantomData;
10use std::{cmp, fmt};
11
12use godot_ffi as sys;
13use sys::{ffi_methods, interface_fn, GodotFfi};
14
15use crate::builtin::*;
16use crate::meta;
17use crate::meta::error::{ConvertError, FromGodotError, FromVariantError};
18use crate::meta::signed_range::SignedRange;
19use crate::meta::{
20 element_godot_type_name, element_variant_type, ArrayElement, AsArg, ClassId, ElementType,
21 ExtVariantType, FromGodot, GodotConvert, GodotFfiVariant, GodotType, PropertyHintInfo, RefArg,
22 ToGodot,
23};
24use crate::obj::{bounds, Bounds, DynGd, Gd, GodotClass};
25use crate::registry::property::{BuiltinExport, Export, Var};
26
27/// Godot's `Array` type.
28///
29/// Versatile, linear storage container for all types that can be represented inside a `Variant`. \
30/// For space-efficient storage, consider using [`PackedArray<T>`][crate::builtin::PackedArray] or `Vec<T>`.
31///
32/// Check out the [book](https://godot-rust.github.io/book/godot-api/builtins.html#arrays-and-dictionaries) for a tutorial on arrays.
33///
34/// # Typed arrays
35///
36/// Godot's `Array` can be either typed or untyped.
37///
38/// An untyped array can contain any kind of [`Variant`], even different types in the same array.
39/// We represent this in Rust as `VariantArray`, which is just a type alias for `Array<Variant>`.
40///
41/// Godot also supports typed arrays, which are also just `Variant` arrays under the hood, but with
42/// runtime checks, so that no values of the wrong type are inserted into the array. We represent this as
43/// `Array<T>`, where the type `T` must implement `ArrayElement`. Some types like `Array<T>` cannot
44/// be stored inside arrays, as Godot prevents nesting.
45///
46/// If you plan to use any integer or float types apart from `i64` and `f64`, read
47/// [this documentation](../meta/trait.ArrayElement.html#integer-and-float-types).
48///
49/// # Reference semantics
50///
51/// Like in GDScript, `Array` acts as a reference type: multiple `Array` instances may
52/// refer to the same underlying array, and changes to one are visible in the other.
53///
54/// To create a copy that shares data with the original array, use [`Clone::clone()`].
55/// If you want to create a copy of the data, use [`duplicate_shallow()`][Self::duplicate_shallow]
56/// or [`duplicate_deep()`][Self::duplicate_deep].
57///
58/// # Typed array example
59///
60/// ```no_run
61/// # use godot::prelude::*;
62/// // Create typed Array<i64> and add values.
63/// let mut array = Array::new();
64/// array.push(10);
65/// array.push(20);
66/// array.push(30);
67///
68/// // Or create the same array in a single expression.
69/// let array = array![10, 20, 30];
70///
71/// // Access elements.
72/// let value: i64 = array.at(0); // 10
73/// let maybe: Option<i64> = array.get(3); // None
74///
75/// // Iterate over i64 elements.
76/// for value in array.iter_shared() {
77/// println!("{value}");
78/// }
79///
80/// // Clone array (shares the reference), and overwrite elements through clone.
81/// let mut cloned = array.clone();
82/// cloned.set(0, 50); // [50, 20, 30]
83/// cloned.remove(1); // [50, 30]
84/// cloned.pop(); // [50]
85///
86/// // Changes will be reflected in the original array.
87/// assert_eq!(array.len(), 1);
88/// assert_eq!(array.front(), Some(50));
89/// ```
90///
91/// # Untyped array example
92///
93/// ```no_run
94/// # use godot::prelude::*;
95/// // VariantArray allows dynamic element types.
96/// let mut array = VariantArray::new();
97/// array.push(&10.to_variant());
98/// array.push(&"Hello".to_variant());
99///
100/// // Or equivalent, use the `varray!` macro which converts each element.
101/// let array = varray![10, "Hello"];
102///
103/// // Access elements.
104/// let value: Variant = array.at(0);
105/// let value: i64 = array.at(0).to(); // Variant::to() extracts i64.
106/// let maybe: Result<i64, _> = array.at(1).try_to(); // "Hello" is not i64 -> Err.
107/// let maybe: Option<Variant> = array.get(3);
108///
109/// // ...and so on.
110/// ```
111///
112/// # Working with signed ranges and steps
113///
114/// For negative indices, use [`wrapped()`](crate::meta::wrapped).
115///
116/// ```no_run
117/// # use godot::builtin::array;
118/// # use godot::meta::wrapped;
119/// let arr = array![0, 1, 2, 3, 4, 5];
120///
121/// // The values of `begin` (inclusive) and `end` (exclusive) will be clamped to the array size.
122/// let clamped_array = arr.subarray_deep(999..99999, None);
123/// assert_eq!(clamped_array, array![]);
124///
125/// // If either `begin` or `end` is negative, its value is relative to the end of the array.
126/// let sub = arr.subarray_shallow(wrapped(-1..-5), None);
127/// assert_eq!(sub, array![5, 3]);
128///
129/// // If `end` is not specified, the range spans through whole array.
130/// let sub = arr.subarray_deep(1.., None);
131/// assert_eq!(sub, array![1, 2, 3, 4, 5]);
132/// let other_clamped_array = arr.subarray_shallow(5.., Some(2));
133/// assert_eq!(other_clamped_array, array![5]);
134///
135/// // If specified, `step` is the relative index between source elements. It can be negative,
136/// // in which case `begin` must be higher than `end`.
137/// let sub = arr.subarray_shallow(wrapped(-1..-5), Some(-2));
138/// assert_eq!(sub, array![5, 3]);
139/// ```
140///
141/// # Thread safety
142///
143/// Usage is safe if the `Array` is used on a single thread only. Concurrent reads on
144/// different threads are also safe, but any writes must be externally synchronized. The Rust
145/// compiler will enforce this as long as you use only Rust threads, but it cannot protect against
146/// concurrent modification on other threads (e.g. created through GDScript).
147///
148/// # Element type safety
149///
150/// We provide a richer set of element types than Godot, for convenience and stronger invariants in your _Rust_ code.
151/// This, however, means that the Godot representation of such arrays is not capable of incorporating the additional "Rust-side" information.
152/// This can lead to situations where GDScript code or the editor UI can insert values that do not fulfill the Rust-side invariants.
153/// The library offers some best-effort protection in Debug mode, but certain errors may only occur on element access, in the form of panics.
154///
155/// Concretely, the following types lose type information when passed to Godot. If you want 100% bullet-proof arrays, avoid those.
156/// - Non-`i64` integers: `i8`, `i16`, `i32`, `u8`, `u16`, `u32`. (`u64` is unsupported).
157/// - Non-`f64` floats: `f32`.
158/// - Non-null objects: [`Gd<T>`][crate::obj::Gd].
159/// Godot generally allows `null` in arrays due to default-constructability, e.g. when using `resize()`.
160/// The Godot-faithful (but less convenient) alternative is to use `Option<Gd<T>>` element types.
161/// - Objects with dyn-trait association: [`DynGd<T, D>`][crate::obj::DynGd].
162/// Godot doesn't know Rust traits and will only see the `T` part.
163///
164/// # Differences from GDScript
165///
166/// Unlike GDScript, all indices and sizes are unsigned, so negative indices are not supported.
167///
168/// # Godot docs
169///
170/// [`Array[T]` (stable)](https://docs.godotengine.org/en/stable/classes/class_array.html)
171pub struct Array<T: ArrayElement> {
172 // Safety Invariant: The type of all values in `opaque` matches the type `T`.
173 opaque: sys::types::OpaqueArray,
174 _phantom: PhantomData<T>,
175
176 /// Lazily computed and cached element type information.
177 cached_element_type: OnceCell<ElementType>,
178}
179
180/// Guard that can only call immutable methods on the array.
181struct ImmutableInnerArray<'a> {
182 inner: inner::InnerArray<'a>,
183}
184
185impl<'a> std::ops::Deref for ImmutableInnerArray<'a> {
186 type Target = inner::InnerArray<'a>;
187
188 fn deref(&self) -> &Self::Target {
189 &self.inner
190 }
191}
192
193/// A Godot `Array` without an assigned type.
194pub type VariantArray = Array<Variant>;
195
196// TODO check if these return a typed array
197impl_builtin_froms!(VariantArray;
198 PackedByteArray => array_from_packed_byte_array,
199 PackedColorArray => array_from_packed_color_array,
200 PackedFloat32Array => array_from_packed_float32_array,
201 PackedFloat64Array => array_from_packed_float64_array,
202 PackedInt32Array => array_from_packed_int32_array,
203 PackedInt64Array => array_from_packed_int64_array,
204 PackedStringArray => array_from_packed_string_array,
205 PackedVector2Array => array_from_packed_vector2_array,
206 PackedVector3Array => array_from_packed_vector3_array,
207);
208
209#[cfg(since_api = "4.3")] #[cfg_attr(published_docs, doc(cfg(since_api = "4.3")))]
210impl_builtin_froms!(VariantArray;
211 PackedVector4Array => array_from_packed_vector4_array,
212);
213
214impl<T: ArrayElement> Array<T> {
215 fn from_opaque(opaque: sys::types::OpaqueArray) -> Self {
216 // Note: type is not yet checked at this point, because array has not yet been initialized!
217 Self {
218 opaque,
219 _phantom: PhantomData,
220 cached_element_type: OnceCell::new(),
221 }
222 }
223
224 /// Constructs an empty `Array`.
225 pub fn new() -> Self {
226 Self::default()
227 }
228
229 /// ⚠️ Returns the value at the specified index.
230 ///
231 /// This replaces the `Index` trait, which cannot be implemented for `Array` as references are not guaranteed to remain valid.
232 ///
233 /// # Panics
234 ///
235 /// If `index` is out of bounds. If you want to handle out-of-bounds access, use [`get()`](Self::get) instead.
236 pub fn at(&self, index: usize) -> T {
237 // Panics on out-of-bounds.
238 let ptr = self.ptr(index);
239
240 // SAFETY: `ptr` is a live pointer to a variant since `ptr.is_null()` just verified that the index is not out of bounds.
241 let variant = unsafe { Variant::borrow_var_sys(ptr) };
242 T::from_variant(variant)
243 }
244
245 /// Returns the value at the specified index, or `None` if the index is out-of-bounds.
246 ///
247 /// If you know the index is correct, use [`at()`](Self::at) instead.
248 pub fn get(&self, index: usize) -> Option<T> {
249 let ptr = self.ptr_or_null(index);
250 if ptr.is_null() {
251 None
252 } else {
253 // SAFETY: `ptr` is a live pointer to a variant since `ptr.is_null()` just verified that the index is not out of bounds.
254 let variant = unsafe { Variant::borrow_var_sys(ptr) };
255 Some(T::from_variant(variant))
256 }
257 }
258
259 /// Returns `true` if the array contains the given value. Equivalent of `has` in GDScript.
260 pub fn contains(&self, value: impl AsArg<T>) -> bool {
261 meta::arg_into_ref!(value: T);
262 self.as_inner().has(&value.to_variant())
263 }
264
265 /// Returns the number of times a value is in the array.
266 pub fn count(&self, value: impl AsArg<T>) -> usize {
267 meta::arg_into_ref!(value: T);
268 to_usize(self.as_inner().count(&value.to_variant()))
269 }
270
271 /// Returns the number of elements in the array. Equivalent of `size()` in Godot.
272 ///
273 /// Retrieving the size incurs an FFI call. If you know the size hasn't changed, you may consider storing
274 /// it in a variable. For loops, prefer iterators.
275 #[doc(alias = "size")]
276 pub fn len(&self) -> usize {
277 to_usize(self.as_inner().size())
278 }
279
280 /// Returns `true` if the array is empty.
281 ///
282 /// Checking for emptiness incurs an FFI call. If you know the size hasn't changed, you may consider storing
283 /// it in a variable. For loops, prefer iterators.
284 pub fn is_empty(&self) -> bool {
285 self.as_inner().is_empty()
286 }
287
288 /// Returns a 32-bit integer hash value representing the array and its contents.
289 ///
290 /// Note: Arrays with equal content will always produce identical hash values. However, the
291 /// reverse is not true. Returning identical hash values does not imply the arrays are equal,
292 /// because different arrays can have identical hash values due to hash collisions.
293 pub fn hash(&self) -> u32 {
294 // The GDExtension interface only deals in `i64`, but the engine's own `hash()` function
295 // actually returns `uint32_t`.
296 self.as_inner().hash().try_into().unwrap()
297 }
298
299 /// Returns the first element in the array, or `None` if the array is empty.
300 #[doc(alias = "first")]
301 pub fn front(&self) -> Option<T> {
302 (!self.is_empty()).then(|| {
303 let variant = self.as_inner().front();
304 T::from_variant(&variant)
305 })
306 }
307
308 /// Returns the last element in the array, or `None` if the array is empty.
309 #[doc(alias = "last")]
310 pub fn back(&self) -> Option<T> {
311 (!self.is_empty()).then(|| {
312 let variant = self.as_inner().back();
313 T::from_variant(&variant)
314 })
315 }
316
317 /// Clears the array, removing all elements.
318 pub fn clear(&mut self) {
319 self.debug_ensure_mutable();
320
321 // SAFETY: No new values are written to the array, we only remove values from the array.
322 unsafe { self.as_inner_mut() }.clear();
323 }
324
325 /// Sets the value at the specified index.
326 ///
327 /// # Panics
328 ///
329 /// If `index` is out of bounds.
330 pub fn set(&mut self, index: usize, value: impl AsArg<T>) {
331 self.debug_ensure_mutable();
332
333 let ptr_mut = self.ptr_mut(index);
334
335 meta::arg_into_ref!(value: T);
336 let variant = value.to_variant();
337
338 // SAFETY: `ptr_mut` just checked that the index is not out of bounds.
339 unsafe { variant.move_into_var_ptr(ptr_mut) };
340 }
341
342 /// Appends an element to the end of the array.
343 ///
344 /// _Godot equivalents: `append` and `push_back`_
345 #[doc(alias = "append")]
346 #[doc(alias = "push_back")]
347 pub fn push(&mut self, value: impl AsArg<T>) {
348 self.debug_ensure_mutable();
349
350 meta::arg_into_ref!(value: T);
351
352 // SAFETY: The array has type `T` and we're writing a value of type `T` to it.
353 let mut inner = unsafe { self.as_inner_mut() };
354 inner.push_back(&value.to_variant());
355 }
356
357 /// Adds an element at the beginning of the array, in O(n).
358 ///
359 /// On large arrays, this method is much slower than [`push()`][Self::push], as it will move all the array's elements.
360 /// The larger the array, the slower `push_front()` will be.
361 pub fn push_front(&mut self, value: impl AsArg<T>) {
362 self.debug_ensure_mutable();
363
364 meta::arg_into_ref!(value: T);
365
366 // SAFETY: The array has type `T` and we're writing a value of type `T` to it.
367 let mut inner_array = unsafe { self.as_inner_mut() };
368 inner_array.push_front(&value.to_variant());
369 }
370
371 /// Removes and returns the last element of the array. Returns `None` if the array is empty.
372 ///
373 /// _Godot equivalent: `pop_back`_
374 #[doc(alias = "pop_back")]
375 pub fn pop(&mut self) -> Option<T> {
376 self.debug_ensure_mutable();
377
378 (!self.is_empty()).then(|| {
379 // SAFETY: We do not write any values to the array, we just remove one.
380 let variant = unsafe { self.as_inner_mut() }.pop_back();
381 T::from_variant(&variant)
382 })
383 }
384
385 /// Removes and returns the first element of the array, in O(n). Returns `None` if the array is empty.
386 ///
387 /// Note: On large arrays, this method is much slower than `pop()` as it will move all the
388 /// array's elements. The larger the array, the slower `pop_front()` will be.
389 pub fn pop_front(&mut self) -> Option<T> {
390 self.debug_ensure_mutable();
391
392 (!self.is_empty()).then(|| {
393 // SAFETY: We do not write any values to the array, we just remove one.
394 let variant = unsafe { self.as_inner_mut() }.pop_front();
395 T::from_variant(&variant)
396 })
397 }
398
399 /// ⚠️ Inserts a new element before the index. The index must be valid or the end of the array (`index == len()`).
400 ///
401 /// On large arrays, this method is much slower than [`push()`][Self::push], as it will move all the array's elements after the inserted element.
402 /// The larger the array, the slower `insert()` will be.
403 ///
404 /// # Panics
405 /// If `index > len()`.
406 pub fn insert(&mut self, index: usize, value: impl AsArg<T>) {
407 self.debug_ensure_mutable();
408
409 let len = self.len();
410 assert!(
411 index <= len,
412 "Array insertion index {index} is out of bounds: length is {len}",
413 );
414
415 meta::arg_into_ref!(value: T);
416
417 // SAFETY: The array has type `T` and we're writing a value of type `T` to it.
418 unsafe { self.as_inner_mut() }.insert(to_i64(index), &value.to_variant());
419 }
420
421 /// ⚠️ Removes and returns the element at the specified index. Equivalent of `pop_at` in GDScript.
422 ///
423 /// On large arrays, this method is much slower than [`pop()`][Self::pop] as it will move all the array's
424 /// elements after the removed element. The larger the array, the slower `remove()` will be.
425 ///
426 /// # Panics
427 ///
428 /// If `index` is out of bounds.
429 #[doc(alias = "pop_at")]
430 pub fn remove(&mut self, index: usize) -> T {
431 self.debug_ensure_mutable();
432
433 self.check_bounds(index);
434
435 // SAFETY: We do not write any values to the array, we just remove one.
436 let variant = unsafe { self.as_inner_mut() }.pop_at(to_i64(index));
437 T::from_variant(&variant)
438 }
439
440 /// Removes the first occurrence of a value from the array.
441 ///
442 /// If the value does not exist in the array, nothing happens. To remove an element by index, use [`remove()`][Self::remove] instead.
443 ///
444 /// On large arrays, this method is much slower than [`pop()`][Self::pop], as it will move all the array's
445 /// elements after the removed element.
446 pub fn erase(&mut self, value: impl AsArg<T>) {
447 self.debug_ensure_mutable();
448
449 meta::arg_into_ref!(value: T);
450
451 // SAFETY: We don't write anything to the array.
452 unsafe { self.as_inner_mut() }.erase(&value.to_variant());
453 }
454
455 /// Assigns the given value to all elements in the array. This can be used together with
456 /// `resize` to create an array with a given size and initialized elements.
457 pub fn fill(&mut self, value: impl AsArg<T>) {
458 self.debug_ensure_mutable();
459
460 meta::arg_into_ref!(value: T);
461
462 // SAFETY: The array has type `T` and we're writing values of type `T` to it.
463 unsafe { self.as_inner_mut() }.fill(&value.to_variant());
464 }
465
466 /// Resizes the array to contain a different number of elements.
467 ///
468 /// If the new size is smaller than the current size, then it removes elements from the end. If the new size is bigger than the current one
469 /// then the new elements are set to `value`.
470 ///
471 /// If you know that the new size is smaller, then consider using [`shrink`](Array::shrink) instead.
472 pub fn resize(&mut self, new_size: usize, value: impl AsArg<T>) {
473 self.debug_ensure_mutable();
474
475 let original_size = self.len();
476
477 // SAFETY: While we do insert `Variant::nil()` if the new size is larger, we then fill it with `value` ensuring that all values in the
478 // array are of type `T` still.
479 unsafe { self.as_inner_mut() }.resize(to_i64(new_size));
480
481 meta::arg_into_ref!(value: T);
482
483 // If new_size < original_size then this is an empty iterator and does nothing.
484 for i in original_size..new_size {
485 // Exception safety: if to_variant() panics, the array will become inconsistent (filled with non-T nils).
486 // At the moment (Nov 2024), this can only happen for u64, which isn't a valid Array element type.
487 // This could be changed to use clone() (if that doesn't panic) or store a variant without moving.
488 let variant = value.to_variant();
489
490 let ptr_mut = self.ptr_mut(i);
491
492 // SAFETY: we iterate pointer within bounds; ptr_mut() additionally checks them.
493 // ptr_mut() lookup could be optimized if we know the internal layout.
494 unsafe { variant.move_into_var_ptr(ptr_mut) };
495 }
496 }
497
498 /// Shrinks the array down to `new_size`.
499 ///
500 /// This will only change the size of the array if `new_size` is smaller than the current size. Returns `true` if the array was shrunk.
501 ///
502 /// If you want to increase the size of the array, use [`resize`](Array::resize) instead.
503 #[doc(alias = "resize")]
504 pub fn shrink(&mut self, new_size: usize) -> bool {
505 self.debug_ensure_mutable();
506
507 if new_size >= self.len() {
508 return false;
509 }
510
511 // SAFETY: Since `new_size` is less than the current size, we'll only be removing elements from the array.
512 unsafe { self.as_inner_mut() }.resize(to_i64(new_size));
513
514 true
515 }
516
517 /// Appends another array at the end of this array. Equivalent of `append_array` in GDScript.
518 pub fn extend_array(&mut self, other: &Array<T>) {
519 self.debug_ensure_mutable();
520
521 // SAFETY: `append_array` will only read values from `other`, and all types can be converted to `Variant`.
522 let other: &VariantArray = unsafe { other.assume_type_ref::<Variant>() };
523
524 // SAFETY: `append_array` will only write values gotten from `other` into `self`, and all values in `other` are guaranteed
525 // to be of type `T`.
526 let mut inner_self = unsafe { self.as_inner_mut() };
527 inner_self.append_array(other);
528 }
529
530 /// Returns a shallow copy of the array. All array elements are copied, but any reference types
531 /// (such as `Array`, `Dictionary` and `Object`) will still refer to the same value.
532 ///
533 /// To create a deep copy, use [`duplicate_deep()`][Self::duplicate_deep] instead.
534 /// To create a new reference to the same array data, use [`clone()`][Clone::clone].
535 pub fn duplicate_shallow(&self) -> Self {
536 // SAFETY: duplicate() returns a typed array with the same type as Self, and all values are taken from `self` so have the right type
537 let duplicate: Self = unsafe { self.as_inner().duplicate(false) };
538
539 // Note: cache is being set while initializing the duplicate as a return value for above call.
540 duplicate
541 }
542
543 /// Returns a deep copy of the array. All nested arrays and dictionaries are duplicated and
544 /// will not be shared with the original array. Note that any `Object`-derived elements will
545 /// still be shallow copied.
546 ///
547 /// To create a shallow copy, use [`duplicate_shallow()`][Self::duplicate_shallow] instead.
548 /// To create a new reference to the same array data, use [`clone()`][Clone::clone].
549 pub fn duplicate_deep(&self) -> Self {
550 // SAFETY: duplicate() returns a typed array with the same type as Self, and all values are taken from `self` so have the right type
551 let duplicate: Self = unsafe { self.as_inner().duplicate(true) };
552
553 // Note: cache is being set while initializing the duplicate as a return value for above call.
554 duplicate
555 }
556
557 /// Returns a sub-range `begin..end` as a new `Array`.
558 ///
559 /// Array elements are copied to the slice, but any reference types (such as `Array`,
560 /// `Dictionary` and `Object`) will still refer to the same value. To create a deep copy, use
561 /// [`subarray_deep()`][Self::subarray_deep] instead.
562 ///
563 /// _Godot equivalent: `slice`_
564 #[doc(alias = "slice")]
565 pub fn subarray_shallow(&self, range: impl SignedRange, step: Option<i32>) -> Self {
566 self.subarray_impl(range, step, false)
567 }
568
569 /// Returns a sub-range `begin..end` as a new `Array`.
570 ///
571 /// All nested arrays and dictionaries are duplicated and will not be shared with the original
572 /// array. Note that any `Object`-derived elements will still be shallow copied. To create a
573 /// shallow copy, use [`subarray_shallow()`][Self::subarray_shallow] instead.
574 ///
575 /// _Godot equivalent: `slice`_
576 #[doc(alias = "slice")]
577 pub fn subarray_deep(&self, range: impl SignedRange, step: Option<i32>) -> Self {
578 self.subarray_impl(range, step, true)
579 }
580
581 // Note: Godot will clamp values by itself.
582 fn subarray_impl(&self, range: impl SignedRange, step: Option<i32>, deep: bool) -> Self {
583 assert_ne!(step, Some(0), "subarray: step cannot be zero");
584
585 let step = step.unwrap_or(1);
586 let (begin, end) = range.signed();
587 let end = end.unwrap_or(i32::MAX as i64);
588
589 // SAFETY: slice() returns a typed array with the same type as Self, and all values are taken from `self` so have the right type.
590 let subarray: Self = unsafe { self.as_inner().slice(begin, end, step as i64, deep) };
591
592 subarray
593 }
594
595 /// Returns an iterator over the elements of the `Array`. Note that this takes the array
596 /// by reference but returns its elements by value, since they are internally converted from
597 /// `Variant`.
598 ///
599 /// Notice that it's possible to modify the `Array` through another reference while
600 /// iterating over it. This will not result in unsoundness or crashes, but will cause the
601 /// iterator to behave in an unspecified way.
602 pub fn iter_shared(&self) -> Iter<'_, T> {
603 Iter {
604 array: self,
605 next_idx: 0,
606 }
607 }
608
609 /// Returns the minimum value contained in the array if all elements are of comparable types.
610 ///
611 /// If the elements can't be compared or the array is empty, `None` is returned.
612 pub fn min(&self) -> Option<T> {
613 let min = self.as_inner().min();
614 (!min.is_nil()).then(|| T::from_variant(&min))
615 }
616
617 /// Returns the maximum value contained in the array if all elements are of comparable types.
618 ///
619 /// If the elements can't be compared or the array is empty, `None` is returned.
620 pub fn max(&self) -> Option<T> {
621 let max = self.as_inner().max();
622 (!max.is_nil()).then(|| T::from_variant(&max))
623 }
624
625 /// Returns a random element from the array, or `None` if it is empty.
626 pub fn pick_random(&self) -> Option<T> {
627 (!self.is_empty()).then(|| {
628 let variant = self.as_inner().pick_random();
629 T::from_variant(&variant)
630 })
631 }
632
633 /// Searches the array for the first occurrence of a value and returns its index, or `None` if
634 /// not found.
635 ///
636 /// Starts searching at index `from`; pass `None` to search the entire array.
637 pub fn find(&self, value: impl AsArg<T>, from: Option<usize>) -> Option<usize> {
638 meta::arg_into_ref!(value: T);
639
640 let from = to_i64(from.unwrap_or(0));
641 let index = self.as_inner().find(&value.to_variant(), from);
642 if index >= 0 {
643 Some(index.try_into().unwrap())
644 } else {
645 None
646 }
647 }
648
649 /// Searches the array backwards for the last occurrence of a value and returns its index, or
650 /// `None` if not found.
651 ///
652 /// Starts searching at index `from`; pass `None` to search the entire array.
653 pub fn rfind(&self, value: impl AsArg<T>, from: Option<usize>) -> Option<usize> {
654 meta::arg_into_ref!(value: T);
655
656 let from = from.map(to_i64).unwrap_or(-1);
657 let index = self.as_inner().rfind(&value.to_variant(), from);
658
659 // It's not documented, but `rfind` returns -1 if not found.
660 if index >= 0 {
661 Some(to_usize(index))
662 } else {
663 None
664 }
665 }
666
667 /// Finds the index of a value in a sorted array using binary search.
668 ///
669 /// If the value is not present in the array, returns the insertion index that would maintain sorting order.
670 ///
671 /// Calling `bsearch` on an unsorted array results in unspecified behavior. Consider using `sort()` to ensure the sorting
672 /// order is compatible with your callable's ordering.
673 pub fn bsearch(&self, value: impl AsArg<T>) -> usize {
674 meta::arg_into_ref!(value: T);
675
676 to_usize(self.as_inner().bsearch(&value.to_variant(), true))
677 }
678
679 /// Finds the index of a value in a sorted array using binary search, with type-safe custom predicate.
680 ///
681 /// The comparator function should return an ordering that indicates whether its argument is `Less`, `Equal` or `Greater` the desired value.
682 /// For example, for an ascending-ordered array, a simple predicate searching for a constant value would be `|elem| elem.cmp(&4)`.
683 /// See also [`slice::binary_search_by()`].
684 ///
685 /// If the value is found, returns `Ok(index)` with its index. Otherwise, returns `Err(index)`, where `index` is the insertion index
686 /// that would maintain sorting order.
687 ///
688 /// Calling `bsearch_by` on an unsorted array results in unspecified behavior. Consider using [`sort_by()`] to ensure
689 /// the sorting order is compatible with your callable's ordering.
690 pub fn bsearch_by<F>(&self, mut func: F) -> Result<usize, usize>
691 where
692 F: FnMut(&T) -> cmp::Ordering + 'static,
693 {
694 // Early exit; later code relies on index 0 being present.
695 if self.is_empty() {
696 return Err(0);
697 }
698
699 // We need one dummy element of type T, because Godot's bsearch_custom() checks types (so Variant::nil() can't be passed).
700 // Optimization: roundtrip Variant -> T -> Variant could be avoided, but anyone needing speed would use Rust binary search...
701 let ignored_value = self.at(0);
702 let ignored_value = meta::owned_into_arg(ignored_value);
703
704 let godot_comparator = |args: &[&Variant]| {
705 let value = T::from_variant(args[0]);
706 let is_less = matches!(func(&value), cmp::Ordering::Less);
707
708 is_less.to_variant()
709 };
710
711 let debug_name = std::any::type_name::<F>();
712 let index = Callable::with_scoped_fn(debug_name, godot_comparator, |pred| {
713 self.bsearch_custom(ignored_value, pred)
714 });
715
716 if let Some(value_at_index) = self.get(index) {
717 if func(&value_at_index) == cmp::Ordering::Equal {
718 return Ok(index);
719 }
720 }
721
722 Err(index)
723 }
724
725 /// Finds the index of a value in a sorted array using binary search, with `Callable` custom predicate.
726 ///
727 /// The callable `pred` takes two elements `(a, b)` and should return if `a < b` (strictly less).
728 /// For a type-safe version, check out [`bsearch_by()`][Self::bsearch_by].
729 ///
730 /// If the value is not present in the array, returns the insertion index that would maintain sorting order.
731 ///
732 /// Calling `bsearch_custom` on an unsorted array results in unspecified behavior. Consider using `sort_custom()` to ensure
733 /// the sorting order is compatible with your callable's ordering.
734 pub fn bsearch_custom(&self, value: impl AsArg<T>, pred: &Callable) -> usize {
735 meta::arg_into_ref!(value: T);
736
737 to_usize(
738 self.as_inner()
739 .bsearch_custom(&value.to_variant(), pred, true),
740 )
741 }
742
743 /// Reverses the order of the elements in the array.
744 pub fn reverse(&mut self) {
745 self.debug_ensure_mutable();
746
747 // SAFETY: We do not write any values that don't already exist in the array, so all values have the correct type.
748 unsafe { self.as_inner_mut() }.reverse();
749 }
750
751 /// Sorts the array.
752 ///
753 /// The sorting algorithm used is not [stable](https://en.wikipedia.org/wiki/Sorting_algorithm#Stability).
754 /// This means that values considered equal may have their order changed when using `sort_unstable`. For most variant types,
755 /// this distinction should not matter though.
756 ///
757 /// _Godot equivalent: `Array.sort()`_
758 #[doc(alias = "sort")]
759 pub fn sort_unstable(&mut self) {
760 self.debug_ensure_mutable();
761
762 // SAFETY: We do not write any values that don't already exist in the array, so all values have the correct type.
763 unsafe { self.as_inner_mut() }.sort();
764 }
765
766 /// Sorts the array, using a type-safe comparator.
767 ///
768 /// The predicate expects two parameters `(a, b)` and should return an ordering relation. For example, simple ascending ordering of the
769 /// elements themselves would be achieved with `|a, b| a.cmp(b)`.
770 ///
771 /// The sorting algorithm used is not [stable](https://en.wikipedia.org/wiki/Sorting_algorithm#Stability).
772 /// This means that values considered equal may have their order changed when using `sort_unstable_by`. For most variant types,
773 /// this distinction should not matter though.
774 pub fn sort_unstable_by<F>(&mut self, mut func: F)
775 where
776 F: FnMut(&T, &T) -> cmp::Ordering,
777 {
778 self.debug_ensure_mutable();
779
780 let godot_comparator = |args: &[&Variant]| {
781 let lhs = T::from_variant(args[0]);
782 let rhs = T::from_variant(args[1]);
783 let is_less = matches!(func(&lhs, &rhs), cmp::Ordering::Less);
784
785 is_less.to_variant()
786 };
787
788 let debug_name = std::any::type_name::<F>();
789 Callable::with_scoped_fn(debug_name, godot_comparator, |pred| {
790 self.sort_unstable_custom(pred)
791 });
792 }
793
794 /// Sorts the array, using type-unsafe `Callable` comparator.
795 ///
796 /// For a type-safe variant of this method, use [`sort_unstable_by()`][Self::sort_unstable_by].
797 ///
798 /// The callable expects two parameters `(lhs, rhs)` and should return a bool `lhs < rhs`.
799 ///
800 /// The sorting algorithm used is not [stable](https://en.wikipedia.org/wiki/Sorting_algorithm#Stability).
801 /// This means that values considered equal may have their order changed when using `sort_unstable_custom`.For most variant types,
802 /// this distinction should not matter though.
803 ///
804 /// _Godot equivalent: `Array.sort_custom()`_
805 #[doc(alias = "sort_custom")]
806 pub fn sort_unstable_custom(&mut self, func: &Callable) {
807 self.debug_ensure_mutable();
808
809 // SAFETY: We do not write any values that don't already exist in the array, so all values have the correct type.
810 unsafe { self.as_inner_mut() }.sort_custom(func);
811 }
812
813 /// Shuffles the array such that the items will have a random order. This method uses the
814 /// global random number generator common to methods such as `randi`. Call `randomize` to
815 /// ensure that a new seed will be used each time if you want non-reproducible shuffling.
816 pub fn shuffle(&mut self) {
817 self.debug_ensure_mutable();
818
819 // SAFETY: We do not write any values that don't already exist in the array, so all values have the correct type.
820 unsafe { self.as_inner_mut() }.shuffle();
821 }
822
823 /// Turns the array into a shallow-immutable array.
824 ///
825 /// Makes the array read-only and returns the original array. The array's elements cannot be overridden with different values, and their
826 /// order cannot change. Does not apply to nested elements, such as dictionaries. This operation is irreversible.
827 ///
828 /// In GDScript, arrays are automatically read-only if declared with the `const` keyword.
829 ///
830 /// # Semantics and alternatives
831 /// You can use this in Rust, but the behavior of mutating methods is only validated in a best-effort manner (more than in GDScript though):
832 /// some methods like `set()` panic in Debug mode, when used on a read-only array. There is no guarantee that any attempts to change result
833 /// in feedback; some may silently do nothing.
834 ///
835 /// In Rust, you can use shared references (`&Array<T>`) to prevent mutation. Note however that `Clone` can be used to create another
836 /// reference, through which mutation can still occur. For deep-immutable arrays, you'll need to keep your `Array` encapsulated or directly
837 /// use Rust data structures.
838 ///
839 /// _Godot equivalent: `make_read_only`_
840 #[doc(alias = "make_read_only")]
841 pub fn into_read_only(self) -> Self {
842 // SAFETY: Changes a per-array property, no elements.
843 unsafe { self.as_inner_mut() }.make_read_only();
844 self
845 }
846
847 /// Returns true if the array is read-only.
848 ///
849 /// See [`into_read_only()`][Self::into_read_only].
850 /// In GDScript, arrays are automatically read-only if declared with the `const` keyword.
851 pub fn is_read_only(&self) -> bool {
852 self.as_inner().is_read_only()
853 }
854
855 /// Best-effort mutability check.
856 ///
857 /// # Panics
858 /// In Debug mode, if the array is marked as read-only.
859 fn debug_ensure_mutable(&self) {
860 debug_assert!(
861 !self.is_read_only(),
862 "mutating operation on read-only array"
863 );
864 }
865
866 /// Asserts that the given index refers to an existing element.
867 ///
868 /// # Panics
869 /// If `index` is out of bounds.
870 fn check_bounds(&self, index: usize) {
871 let len = self.len();
872 assert!(
873 index < len,
874 "Array index {index} is out of bounds: length is {len}",
875 );
876 }
877
878 /// Returns a pointer to the element at the given index.
879 ///
880 /// # Panics
881 /// If `index` is out of bounds.
882 fn ptr(&self, index: usize) -> sys::GDExtensionConstVariantPtr {
883 let ptr = self.ptr_or_null(index);
884 assert!(
885 !ptr.is_null(),
886 "Array index {index} out of bounds (len {len})",
887 len = self.len(),
888 );
889 ptr
890 }
891
892 /// Returns a pointer to the element at the given index, or null if out of bounds.
893 fn ptr_or_null(&self, index: usize) -> sys::GDExtensionConstVariantPtr {
894 // SAFETY: array_operator_index_const returns null for invalid indexes.
895 let variant_ptr = unsafe {
896 let index = to_i64(index);
897 interface_fn!(array_operator_index_const)(self.sys(), index)
898 };
899
900 // Signature is wrong in GDExtension, semantically this is a const ptr
901 sys::SysPtr::as_const(variant_ptr)
902 }
903
904 /// Returns a mutable pointer to the element at the given index.
905 ///
906 /// # Panics
907 ///
908 /// If `index` is out of bounds.
909 fn ptr_mut(&mut self, index: usize) -> sys::GDExtensionVariantPtr {
910 let ptr = self.ptr_mut_or_null(index);
911 assert!(
912 !ptr.is_null(),
913 "Array index {index} out of bounds (len {len})",
914 len = self.len(),
915 );
916 ptr
917 }
918
919 /// Returns a pointer to the element at the given index, or null if out of bounds.
920 fn ptr_mut_or_null(&mut self, index: usize) -> sys::GDExtensionVariantPtr {
921 // SAFETY: array_operator_index returns null for invalid indexes.
922 unsafe {
923 let index = to_i64(index);
924 interface_fn!(array_operator_index)(self.sys_mut(), index)
925 }
926 }
927
928 /// # Safety
929 ///
930 /// This has the same safety issues as doing `self.assume_type::<Variant>()` and so the relevant safety invariants from
931 /// [`assume_type`](Self::assume_type) must be upheld.
932 ///
933 /// In particular this means that all reads are fine, since all values can be converted to `Variant`. However, writes are only OK
934 /// if they match the type `T`.
935 #[doc(hidden)]
936 pub unsafe fn as_inner_mut(&self) -> inner::InnerArray<'_> {
937 // The memory layout of `Array<T>` does not depend on `T`.
938 inner::InnerArray::from_outer_typed(self)
939 }
940
941 fn as_inner(&self) -> ImmutableInnerArray<'_> {
942 ImmutableInnerArray {
943 // SAFETY: We can only read from the array.
944 inner: unsafe { self.as_inner_mut() },
945 }
946 }
947
948 /// Changes the generic type on this array, without changing its contents. Needed for API functions
949 /// that take a variant array even though we want to pass a typed one.
950 ///
951 /// # Safety
952 ///
953 /// - Any values written to the array must match the runtime type of the array.
954 /// - Any values read from the array must be convertible to the type `U`.
955 ///
956 /// If the safety invariant of `Array` is intact, which it must be for any publicly accessible arrays, then `U` must match
957 /// the runtime type of the array. This then implies that both of the conditions above hold. This means that you only need
958 /// to keep the above conditions in mind if you are intentionally violating the safety invariant of `Array`.
959 ///
960 /// Note also that any `GodotType` can be written to a `Variant` array.
961 ///
962 /// In the current implementation, both cases will produce a panic rather than undefined behavior, but this should not be relied upon.
963 unsafe fn assume_type_ref<U: ArrayElement>(&self) -> &Array<U> {
964 // The memory layout of `Array<T>` does not depend on `T`.
965 std::mem::transmute::<&Array<T>, &Array<U>>(self)
966 }
967
968 /// Validates that all elements in this array can be converted to integers of type `T`.
969 #[cfg(debug_assertions)] #[cfg_attr(published_docs, doc(cfg(debug_assertions)))]
970 pub(crate) fn debug_validate_int_elements(&self) -> Result<(), ConvertError> {
971 // SAFETY: every element is internally represented as Variant.
972 let canonical_array = unsafe { self.assume_type_ref::<Variant>() };
973
974 // If any element is not convertible, this will return an error.
975 for elem in canonical_array.iter_shared() {
976 elem.try_to::<T>().map_err(|_err| {
977 FromGodotError::BadArrayTypeInt {
978 expected_int_type: std::any::type_name::<T>(),
979 value: elem
980 .try_to::<i64>()
981 .expect("origin must be i64 compatible; this is a bug"),
982 }
983 .into_error(self.clone()) // Context info about array, not element.
984 })?;
985 }
986
987 Ok(())
988 }
989
990 // No-op in Release. Avoids O(n) conversion checks, but still panics on access.
991 #[cfg(not(debug_assertions))] #[cfg_attr(published_docs, doc(cfg(not(debug_assertions))))]
992 pub(crate) fn debug_validate_int_elements(&self) -> Result<(), ConvertError> {
993 Ok(())
994 }
995
996 /// Returns the runtime element type information for this array.
997 ///
998 /// The result is generally cached, so feel free to call this method repeatedly.
999 ///
1000 /// # Panics (Debug)
1001 /// In the astronomically rare case where another extension in Godot modifies an array's type (which godot-rust already cached as `Untyped`)
1002 /// via C function `array_set_typed`, thus leading to incorrect cache values. Such bad practice of not typing arrays immediately on
1003 /// construction is not supported, and will not be checked in Release mode.
1004 pub fn element_type(&self) -> ElementType {
1005 ElementType::get_or_compute_cached(
1006 &self.cached_element_type,
1007 || self.as_inner().get_typed_builtin(),
1008 || self.as_inner().get_typed_class_name(),
1009 || self.as_inner().get_typed_script(),
1010 )
1011 }
1012
1013 /// Checks that the inner array has the correct type set on it for storing elements of type `T`.
1014 fn with_checked_type(self) -> Result<Self, ConvertError> {
1015 let self_ty = self.element_type();
1016 let target_ty = ElementType::of::<T>();
1017
1018 // Exact match: check successful.
1019 if self_ty == target_ty {
1020 return Ok(self);
1021 }
1022
1023 // Check if script class (runtime) matches its native base class (compile-time).
1024 // This allows an Array[Enemy] from GDScript to be used as Array<Gd<RefCounted>> in Rust.
1025 if let (ElementType::ScriptClass(_), ElementType::Class(expected_class)) =
1026 (&self_ty, &target_ty)
1027 {
1028 if let Some(actual_base_class) = self_ty.class_id() {
1029 if actual_base_class == *expected_class {
1030 return Ok(self);
1031 }
1032 }
1033 }
1034
1035 Err(FromGodotError::BadArrayType {
1036 expected: target_ty,
1037 actual: self_ty,
1038 }
1039 .into_error(self))
1040 }
1041
1042 /// Sets the type of the inner array.
1043 ///
1044 /// # Safety
1045 /// Must only be called once, directly after creation.
1046 unsafe fn init_inner_type(&mut self) {
1047 debug_assert!(self.is_empty());
1048 debug_assert!(
1049 self.cached_element_type.get().is_none(),
1050 "init_inner_type() called twice"
1051 );
1052
1053 // Immediately set cache to static type.
1054 let elem_ty = ElementType::of::<T>();
1055 let _ = self.cached_element_type.set(elem_ty);
1056
1057 if elem_ty.is_typed() {
1058 let script = Variant::nil();
1059
1060 // A bit contrived because empty StringName is lazy-initialized but must also remain valid.
1061 #[allow(unused_assignments)]
1062 let mut empty_string_name = None;
1063 let class_name = if let Some(class_id) = elem_ty.class_id() {
1064 class_id.string_sys()
1065 } else {
1066 empty_string_name = Some(StringName::default());
1067 // as_ref() crucial here -- otherwise the StringName is dropped.
1068 empty_string_name.as_ref().unwrap().string_sys()
1069 };
1070
1071 // SAFETY: Valid pointers are passed in.
1072 // Relevant for correctness, not safety: the array is a newly created, empty, untyped array.
1073 unsafe {
1074 interface_fn!(array_set_typed)(
1075 self.sys_mut(),
1076 elem_ty.variant_type().sys(),
1077 class_name, // must be empty if variant_type != OBJECT.
1078 script.var_sys(),
1079 );
1080 }
1081 }
1082 }
1083
1084 /// Returns a clone of the array without checking the resulting type.
1085 ///
1086 /// # Safety
1087 /// Should be used only in scenarios where the caller can guarantee that the resulting array will have the correct type,
1088 /// or when an incorrect Rust type is acceptable (passing raw arrays to Godot FFI).
1089 unsafe fn clone_unchecked(&self) -> Self {
1090 let result = Self::new_with_uninit(|self_ptr| {
1091 let ctor = sys::builtin_fn!(array_construct_copy);
1092 let args = [self.sys()];
1093 ctor(self_ptr, args.as_ptr());
1094 });
1095 result.with_cache(self)
1096 }
1097
1098 /// Whether this array is untyped and holds `Variant` elements (compile-time check).
1099 ///
1100 /// Used as `if` statement in trait impls. Avoids defining yet another trait or non-local overridden function just for this case;
1101 /// `Variant` is the only Godot type that has variant type NIL and can be used as an array element.
1102 fn has_variant_t() -> bool {
1103 element_variant_type::<T>() == VariantType::NIL
1104 }
1105
1106 /// Execute a function that creates a new Array, transferring cached element type if available.
1107 ///
1108 /// This is a convenience helper for methods that create new Array instances and want to preserve
1109 /// cached type information to avoid redundant FFI calls.
1110 fn with_cache(self, source: &Self) -> Self {
1111 ElementType::transfer_cache(&source.cached_element_type, &self.cached_element_type);
1112 self
1113 }
1114}
1115
1116#[test]
1117fn correct_variant_t() {
1118 assert!(Array::<Variant>::has_variant_t());
1119 assert!(!Array::<i64>::has_variant_t());
1120}
1121
1122impl VariantArray {
1123 /// # Safety
1124 /// - Variant must have type `VariantType::ARRAY`.
1125 /// - Subsequent operations on this array must not rely on the type of the array.
1126 pub(crate) unsafe fn from_variant_unchecked(variant: &Variant) -> Self {
1127 // See also ffi_from_variant().
1128 Self::new_with_uninit(|self_ptr| {
1129 let array_from_variant = sys::builtin_fn!(array_from_variant);
1130 array_from_variant(self_ptr, sys::SysPtr::force_mut(variant.var_sys()));
1131 })
1132 }
1133}
1134
1135// ----------------------------------------------------------------------------------------------------------------------------------------------
1136// Traits
1137
1138// Godot has some inconsistent behavior around NaN values. In GDScript, `NAN == NAN` is `false`,
1139// but `[NAN] == [NAN]` is `true`. If they decide to make all NaNs equal, we can implement `Eq` and
1140// `Ord`; if they decide to make all NaNs unequal, we can remove this comment.
1141//
1142// impl<T> Eq for Array<T> {}
1143//
1144// impl<T> Ord for Array<T> {
1145// ...
1146// }
1147
1148// SAFETY:
1149// - `move_return_ptr`
1150// Nothing special needs to be done beyond a `std::mem::swap` when returning an Array.
1151// So we can just use `ffi_methods`.
1152//
1153// - `from_arg_ptr`
1154// Arrays are properly initialized through a `from_sys` call, but the ref-count should be incremented
1155// as that is the callee's responsibility. Which we do by calling `std::mem::forget(array.clone())`.
1156unsafe impl<T: ArrayElement> GodotFfi for Array<T> {
1157 const VARIANT_TYPE: ExtVariantType = ExtVariantType::Concrete(VariantType::ARRAY);
1158
1159 ffi_methods! { type sys::GDExtensionTypePtr = *mut Opaque; .. }
1160}
1161
1162// Only implement for untyped arrays; typed arrays cannot be nested in Godot.
1163impl ArrayElement for VariantArray {}
1164
1165impl<T: ArrayElement> GodotConvert for Array<T> {
1166 type Via = Self;
1167}
1168
1169impl<T: ArrayElement> ToGodot for Array<T> {
1170 type Pass = meta::ByRef;
1171
1172 fn to_godot(&self) -> &Self::Via {
1173 self
1174 }
1175
1176 fn to_godot_owned(&self) -> Self::Via
1177 where
1178 Self::Via: Clone,
1179 {
1180 // Overridden, because default clone() validates that before/after element types are equal, which doesn't matter when we pass to FFI.
1181 // This may however be an issue if to_godot_owned() is used by the user directly.
1182 unsafe { self.clone_unchecked() }
1183 }
1184}
1185
1186impl<T: ArrayElement> FromGodot for Array<T> {
1187 fn try_from_godot(via: Self::Via) -> Result<Self, ConvertError> {
1188 T::debug_validate_elements(&via)?;
1189 Ok(via)
1190 }
1191}
1192
1193impl<T: ArrayElement> fmt::Debug for Array<T> {
1194 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1195 // Going through `Variant` because there doesn't seem to be a direct way.
1196 // Reuse Display.
1197 write!(f, "{}", self.to_variant().stringify())
1198 }
1199}
1200
1201impl<T: ArrayElement + fmt::Display> fmt::Display for Array<T> {
1202 /// Formats `Array` to match Godot's string representation.
1203 ///
1204 /// # Example
1205 /// ```no_run
1206 /// # use godot::prelude::*;
1207 /// let a = array![1,2,3,4];
1208 /// assert_eq!(format!("{a}"), "[1, 2, 3, 4]");
1209 /// ```
1210 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1211 write!(f, "[")?;
1212 for (count, v) in self.iter_shared().enumerate() {
1213 if count != 0 {
1214 write!(f, ", ")?;
1215 }
1216 write!(f, "{v}")?;
1217 }
1218 write!(f, "]")
1219 }
1220}
1221
1222/// Creates a new reference to the data in this array. Changes to the original array will be
1223/// reflected in the copy and vice versa.
1224///
1225/// To create a (mostly) independent copy instead, see [`Array::duplicate_shallow()`] and
1226/// [`Array::duplicate_deep()`].
1227impl<T: ArrayElement> Clone for Array<T> {
1228 fn clone(&self) -> Self {
1229 // SAFETY: `self` is a valid array, since we have a reference that keeps it alive.
1230 // Type-check follows below.
1231 let copy = unsafe { self.clone_unchecked() };
1232
1233 // Double-check copy's runtime type in Debug mode.
1234 if cfg!(debug_assertions) {
1235 copy.with_checked_type().unwrap_or_else(|e| {
1236 panic!("copied array should have same type as original array: {e}")
1237 })
1238 } else {
1239 copy
1240 }
1241 }
1242}
1243
1244impl<T: ArrayElement> Var for Array<T> {
1245 fn get_property(&self) -> Self::Via {
1246 self.to_godot_owned()
1247 }
1248
1249 fn set_property(&mut self, value: Self::Via) {
1250 *self = FromGodot::from_godot(value)
1251 }
1252
1253 fn var_hint() -> PropertyHintInfo {
1254 // For array #[var], the hint string is "PackedInt32Array", "Node" etc. for typed arrays, and "" for untyped arrays.
1255 if Self::has_variant_t() {
1256 PropertyHintInfo::none()
1257 } else {
1258 PropertyHintInfo::var_array_element::<T>()
1259 }
1260 }
1261}
1262
1263impl<T> Export for Array<T>
1264where
1265 T: ArrayElement + Export,
1266{
1267 fn export_hint() -> PropertyHintInfo {
1268 // If T == Variant, then we return "Array" builtin type hint.
1269 if Self::has_variant_t() {
1270 PropertyHintInfo::type_name::<VariantArray>()
1271 } else {
1272 PropertyHintInfo::export_array_element::<T>()
1273 }
1274 }
1275}
1276
1277impl<T: ArrayElement> BuiltinExport for Array<T> {}
1278
1279impl<T> Export for Array<Gd<T>>
1280where
1281 T: GodotClass + Bounds<Exportable = bounds::Yes>,
1282{
1283 fn export_hint() -> PropertyHintInfo {
1284 PropertyHintInfo::export_array_element::<Gd<T>>()
1285 }
1286
1287 #[doc(hidden)]
1288 fn as_node_class() -> Option<ClassId> {
1289 PropertyHintInfo::object_as_node_class::<T>()
1290 }
1291}
1292
1293/// `#[export]` for `Array<DynGd<T, D>>` is available only for `T` being Engine class (such as Node or Resource).
1294///
1295/// Consider exporting `Array<Gd<T>>` instead of `Array<DynGd<T, D>>` for user-declared GDExtension classes.
1296impl<T: GodotClass, D> Export for Array<DynGd<T, D>>
1297where
1298 T: GodotClass + Bounds<Exportable = bounds::Yes>,
1299 D: ?Sized + 'static,
1300{
1301 fn export_hint() -> PropertyHintInfo {
1302 PropertyHintInfo::export_array_element::<DynGd<T, D>>()
1303 }
1304
1305 #[doc(hidden)]
1306 fn as_node_class() -> Option<ClassId> {
1307 PropertyHintInfo::object_as_node_class::<T>()
1308 }
1309}
1310
1311impl<T: ArrayElement> Default for Array<T> {
1312 #[inline]
1313 fn default() -> Self {
1314 let mut array = unsafe {
1315 Self::new_with_uninit(|self_ptr| {
1316 let ctor = sys::builtin_fn!(array_construct_default);
1317 ctor(self_ptr, std::ptr::null_mut())
1318 })
1319 };
1320
1321 // SAFETY: We just created this array, and haven't called `init_inner_type` before.
1322 unsafe { array.init_inner_type() };
1323 array
1324 }
1325}
1326
1327// T must be GodotType (or subtrait ArrayElement), because drop() requires sys_mut(), which is on the GodotFfi trait.
1328// Its sister method GodotFfi::from_sys_init() requires Default, which is only implemented for T: GodotType.
1329// This could be addressed by splitting up GodotFfi if desired.
1330impl<T: ArrayElement> Drop for Array<T> {
1331 #[inline]
1332 fn drop(&mut self) {
1333 unsafe {
1334 let array_destroy = sys::builtin_fn!(array_destroy);
1335 array_destroy(self.sys_mut());
1336 }
1337 }
1338}
1339
1340impl<T: ArrayElement> GodotType for Array<T> {
1341 type Ffi = Self;
1342
1343 type ToFfi<'f>
1344 = RefArg<'f, Array<T>>
1345 where
1346 Self: 'f;
1347
1348 fn to_ffi(&self) -> Self::ToFfi<'_> {
1349 RefArg::new(self)
1350 }
1351
1352 fn into_ffi(self) -> Self::Ffi {
1353 self
1354 }
1355
1356 fn try_from_ffi(ffi: Self::Ffi) -> Result<Self, ConvertError> {
1357 Ok(ffi)
1358 }
1359
1360 fn godot_type_name() -> String {
1361 "Array".to_string()
1362 }
1363
1364 fn property_hint_info() -> PropertyHintInfo {
1365 // Array<Variant>, aka untyped array, has no hints.
1366 if Self::has_variant_t() {
1367 return PropertyHintInfo::none();
1368 }
1369
1370 // Typed arrays use type hint.
1371 PropertyHintInfo {
1372 hint: crate::global::PropertyHint::ARRAY_TYPE,
1373 hint_string: GString::from(&element_godot_type_name::<T>()),
1374 }
1375 }
1376}
1377
1378impl<T: ArrayElement> GodotFfiVariant for Array<T> {
1379 fn ffi_to_variant(&self) -> Variant {
1380 unsafe {
1381 Variant::new_with_var_uninit(|variant_ptr| {
1382 let array_to_variant = sys::builtin_fn!(array_to_variant);
1383 array_to_variant(variant_ptr, sys::SysPtr::force_mut(self.sys()));
1384 })
1385 }
1386 }
1387
1388 fn ffi_from_variant(variant: &Variant) -> Result<Self, ConvertError> {
1389 // First check if the variant is an array. The array conversion shouldn't be called otherwise.
1390 if variant.get_type() != Self::VARIANT_TYPE.variant_as_nil() {
1391 return Err(FromVariantError::BadType {
1392 expected: Self::VARIANT_TYPE.variant_as_nil(),
1393 actual: variant.get_type(),
1394 }
1395 .into_error(variant.clone()));
1396 }
1397
1398 let array = unsafe {
1399 Self::new_with_uninit(|self_ptr| {
1400 let array_from_variant = sys::builtin_fn!(array_from_variant);
1401 array_from_variant(self_ptr, sys::SysPtr::force_mut(variant.var_sys()));
1402 })
1403 };
1404
1405 // Then, check the runtime type of the array.
1406 array.with_checked_type()
1407 }
1408}
1409
1410// ----------------------------------------------------------------------------------------------------------------------------------------------
1411// Conversion traits
1412
1413/// Creates a `Array` from the given Rust array.
1414impl<T: ArrayElement + ToGodot, const N: usize> From<&[T; N]> for Array<T> {
1415 fn from(arr: &[T; N]) -> Self {
1416 Self::from(&arr[..])
1417 }
1418}
1419
1420/// Creates a `Array` from the given slice.
1421impl<T: ArrayElement + ToGodot> From<&[T]> for Array<T> {
1422 fn from(slice: &[T]) -> Self {
1423 let mut array = Self::new();
1424 let len = slice.len();
1425 if len == 0 {
1426 return array;
1427 }
1428
1429 // SAFETY: We fill the array with `Variant::nil()`, however since we're resizing to the size of the slice we'll end up rewriting all
1430 // the nulls with values of type `T`.
1431 unsafe { array.as_inner_mut() }.resize(to_i64(len));
1432
1433 // SAFETY: `array` has `len` elements since we just resized it, and they are all valid `Variant`s. Additionally, since
1434 // the array was created in this function, and we do not access the array while this slice exists, the slice has unique
1435 // access to the elements.
1436 let elements = unsafe { Variant::borrow_slice_mut(array.ptr_mut(0), len) };
1437 for (element, array_slot) in slice.iter().zip(elements.iter_mut()) {
1438 *array_slot = element.to_variant();
1439 }
1440
1441 array
1442 }
1443}
1444
1445/// Creates a `Array` from an iterator.
1446impl<T: ArrayElement + ToGodot> FromIterator<T> for Array<T> {
1447 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
1448 let mut array = Self::new();
1449 array.extend(iter);
1450 array
1451 }
1452}
1453
1454/// Extends a `Array` with the contents of an iterator.
1455impl<T: ArrayElement> Extend<T> for Array<T> {
1456 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
1457 // Unfortunately the GDExtension API does not offer the equivalent of `Vec::reserve`.
1458 // Otherwise, we could use it to pre-allocate based on `iter.size_hint()`.
1459 //
1460 // A faster implementation using `resize()` and direct pointer writes might still be possible.
1461 // Note that this could technically also use iter(), since no moves need to happen (however Extend requires IntoIterator).
1462 for item in iter.into_iter() {
1463 // self.push(AsArg::into_arg(&item));
1464 self.push(meta::owned_into_arg(item));
1465 }
1466 }
1467}
1468
1469/// Converts this array to a strongly typed Rust vector.
1470impl<T: ArrayElement + FromGodot> From<&Array<T>> for Vec<T> {
1471 fn from(array: &Array<T>) -> Vec<T> {
1472 let len = array.len();
1473 let mut vec = Vec::with_capacity(len);
1474
1475 // SAFETY: Unless `experimental-threads` is enabled, then we cannot have concurrent access to this array.
1476 // And since we don't concurrently access the array in this function, we can create a slice to its contents.
1477 let elements = unsafe { Variant::borrow_slice(array.ptr(0), len) };
1478
1479 vec.extend(elements.iter().map(T::from_variant));
1480
1481 vec
1482 }
1483}
1484
1485// ----------------------------------------------------------------------------------------------------------------------------------------------
1486
1487/// An iterator over typed elements of an [`Array`].
1488pub struct Iter<'a, T: ArrayElement> {
1489 array: &'a Array<T>,
1490 next_idx: usize,
1491}
1492
1493impl<T: ArrayElement + FromGodot> Iterator for Iter<'_, T> {
1494 type Item = T;
1495
1496 fn next(&mut self) -> Option<Self::Item> {
1497 if self.next_idx < self.array.len() {
1498 let idx = self.next_idx;
1499 self.next_idx += 1;
1500
1501 let element_ptr = self.array.ptr_or_null(idx);
1502
1503 // SAFETY: We just checked that the index is not out of bounds, so the pointer won't be null.
1504 // We immediately convert this to the right element, so barring `experimental-threads` the pointer won't be invalidated in time.
1505 let variant = unsafe { Variant::borrow_var_sys(element_ptr) };
1506 let element = T::from_variant(variant);
1507 Some(element)
1508 } else {
1509 None
1510 }
1511 }
1512
1513 fn size_hint(&self) -> (usize, Option<usize>) {
1514 let remaining = self.array.len() - self.next_idx;
1515 (remaining, Some(remaining))
1516 }
1517}
1518
1519// TODO There's a macro for this, but it doesn't support generics yet; add support and use it
1520impl<T: ArrayElement> PartialEq for Array<T> {
1521 #[inline]
1522 fn eq(&self, other: &Self) -> bool {
1523 unsafe {
1524 let mut result = false;
1525 sys::builtin_call! {
1526 array_operator_equal(self.sys(), other.sys(), result.sys_mut())
1527 }
1528 result
1529 }
1530 }
1531}
1532
1533impl<T: ArrayElement> PartialOrd for Array<T> {
1534 #[inline]
1535 fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
1536 let op_less = |lhs, rhs| unsafe {
1537 let mut result = false;
1538 sys::builtin_call! {
1539 array_operator_less(lhs, rhs, result.sys_mut())
1540 }
1541 result
1542 };
1543
1544 if op_less(self.sys(), other.sys()) {
1545 Some(std::cmp::Ordering::Less)
1546 } else if op_less(other.sys(), self.sys()) {
1547 Some(std::cmp::Ordering::Greater)
1548 } else if self.eq(other) {
1549 Some(std::cmp::Ordering::Equal)
1550 } else {
1551 None
1552 }
1553 }
1554}
1555
1556// ----------------------------------------------------------------------------------------------------------------------------------------------
1557
1558/// Constructs [`Array`] literals, similar to Rust's standard `vec!` macro.
1559///
1560///
1561/// # Type inference
1562/// To create an `Array<E>`, the types of the provided values `T` must implement [`AsArg<E>`].
1563///
1564/// For values that can directly be represented in Godot (implementing [`GodotType`]), types can usually be inferred.
1565/// You need to respect by-value vs. by-reference semantics as per [`ToGodot::Pass`].
1566///
1567/// # Examples
1568/// ```no_run
1569/// # use godot::prelude::*;
1570/// // Inferred type - i32: AsArg<i32>
1571/// let ints = array![3, 1, 4];
1572///
1573/// // Inferred type - &GString: AsArg<GString>
1574/// let strs = array![&GString::from("godot-rust")];
1575///
1576/// // Explicitly specified type - &str: AsArg<GString>
1577/// let strs: Array<GString> = array!["Godot", "Rust"];
1578/// ```
1579///
1580/// # See also
1581/// To create an `Array` of variants, see the [`varray!`] macro.
1582///
1583/// For dictionaries, a similar macro [`vdict!`] exists.
1584#[macro_export]
1585macro_rules! array {
1586 ($($elements:expr),* $(,)?) => {
1587 {
1588 let mut array = $crate::builtin::Array::default();
1589 $(
1590 array.push($elements);
1591 )*
1592 array
1593 }
1594 };
1595}
1596
1597/// Constructs [`VariantArray`] literals, similar to Rust's standard `vec!` macro.
1598///
1599/// The type of the array elements is always [`Variant`].
1600///
1601/// # Example
1602/// ```no_run
1603/// # use godot::prelude::*;
1604/// let arr: VariantArray = varray![42_i64, "hello", true];
1605/// ```
1606///
1607/// # See also
1608/// To create a typed `Array` with a single element type, see the [`array!`] macro.
1609///
1610/// For dictionaries, a similar macro [`vdict!`] exists.
1611///
1612/// To construct slices of variants, use [`vslice!`].
1613#[macro_export]
1614macro_rules! varray {
1615 // Note: use to_variant() and not Variant::from(), as that works with both references and values
1616 ($($elements:expr),* $(,)?) => {
1617 {
1618 use $crate::meta::ToGodot as _;
1619 let mut array = $crate::builtin::VariantArray::default();
1620 $(
1621 array.push(&$elements.to_variant());
1622 )*
1623 array
1624 }
1625 };
1626}
1627
1628/// Constructs a slice of [`Variant`] literals, useful for passing to vararg functions.
1629///
1630/// Many APIs in Godot have variable-length arguments. GDScript can call such functions by simply passing more arguments, but in Rust,
1631/// the parameter type `&[Variant]` is used.
1632///
1633/// This macro creates a [slice](https://doc.rust-lang.org/std/primitive.slice.html) of `Variant` values.
1634///
1635/// # Examples
1636/// Variable number of arguments:
1637/// ```no_run
1638/// # use godot::prelude::*;
1639/// let slice: &[Variant] = vslice![42, "hello", true];
1640///
1641/// let concat: GString = godot::global::str(slice);
1642/// ```
1643/// _(In practice, you might want to use [`godot_str!`][crate::global::godot_str] instead of `str()`.)_
1644///
1645/// Dynamic function call via reflection. NIL can still be passed inside `vslice!`, just use `Variant::nil()`.
1646/// ```no_run
1647/// # use godot::prelude::*;
1648/// # fn some_object() -> Gd<Object> { unimplemented!() }
1649/// let mut obj: Gd<Object> = some_object();
1650/// obj.call("some_method", vslice![Vector2i::new(1, 2), Variant::nil()]);
1651/// ```
1652///
1653/// # See also
1654/// To create typed and untyped `Array`s, use the [`array!`] and [`varray!`] macros respectively.
1655///
1656/// For dictionaries, a similar macro [`vdict!`] exists.
1657#[macro_export]
1658macro_rules! vslice {
1659 // Note: use to_variant() and not Variant::from(), as that works with both references and values
1660 ($($elements:expr),* $(,)?) => {
1661 {
1662 use $crate::meta::ToGodot as _;
1663 let mut array = $crate::builtin::VariantArray::default();
1664 &[
1665 $( $elements.to_variant(), )*
1666 ]
1667 }
1668 };
1669}
1670
1671// ----------------------------------------------------------------------------------------------------------------------------------------------
1672
1673#[cfg(feature = "serde")] #[cfg_attr(published_docs, doc(cfg(feature = "serde")))]
1674mod serialize {
1675 use std::marker::PhantomData;
1676
1677 use serde::de::{SeqAccess, Visitor};
1678 use serde::ser::SerializeSeq;
1679 use serde::{Deserialize, Deserializer, Serialize, Serializer};
1680
1681 use super::*;
1682
1683 impl<T> Serialize for Array<T>
1684 where
1685 T: ArrayElement + Serialize,
1686 {
1687 #[inline]
1688 fn serialize<S>(
1689 &self,
1690 serializer: S,
1691 ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
1692 where
1693 S: Serializer,
1694 {
1695 let mut sequence = serializer.serialize_seq(Some(self.len()))?;
1696 for e in self.iter_shared() {
1697 sequence.serialize_element(&e)?
1698 }
1699 sequence.end()
1700 }
1701 }
1702
1703 impl<'de, T> Deserialize<'de> for Array<T>
1704 where
1705 T: ArrayElement + Deserialize<'de>,
1706 {
1707 #[inline]
1708 fn deserialize<D>(deserializer: D) -> Result<Self, <D as Deserializer<'de>>::Error>
1709 where
1710 D: Deserializer<'de>,
1711 {
1712 struct ArrayVisitor<T>(PhantomData<T>);
1713 impl<'de, T> Visitor<'de> for ArrayVisitor<T>
1714 where
1715 T: ArrayElement + Deserialize<'de>,
1716 {
1717 type Value = Array<T>;
1718
1719 fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1720 formatter.write_str(std::any::type_name::<Self::Value>())
1721 }
1722
1723 fn visit_seq<A>(
1724 self,
1725 mut seq: A,
1726 ) -> Result<Self::Value, <A as SeqAccess<'de>>::Error>
1727 where
1728 A: SeqAccess<'de>,
1729 {
1730 let mut vec = seq.size_hint().map_or_else(Vec::new, Vec::with_capacity);
1731 while let Some(val) = seq.next_element::<T>()? {
1732 vec.push(val);
1733 }
1734 Ok(Self::Value::from(vec.as_slice()))
1735 }
1736 }
1737
1738 deserializer.deserialize_seq(ArrayVisitor::<T>(PhantomData))
1739 }
1740 }
1741}