godot_core/builtin/basis.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
/*
* Copyright (c) godot-rust; Bromeon and contributors.
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*/
use godot_ffi as sys;
use sys::{ffi_methods, GodotFfi};
use crate::builtin::math::{ApproxEq, FloatExt, GlamConv, GlamType};
use crate::builtin::real_consts::FRAC_PI_2;
use crate::builtin::{real, EulerOrder, Quaternion, RMat3, RQuat, RVec2, RVec3, Vector3};
use std::cmp::Ordering;
use std::fmt::Display;
use std::ops::{Mul, MulAssign};
/// A 3x3 matrix, typically used as an orthogonal basis for [`Transform3D`](crate::builtin::Transform3D).
///
/// Indexing into a `Basis` is done in row-major order. So `mat[1]` would return the first *row* and not
/// the first *column*/basis vector. This means that indexing into the matrix happens in the same order
/// it usually does in math, except that we index starting at 0.
///
/// The basis vectors are the columns of the matrix, whereas the [`rows`](Self::rows) field represents
/// the row vectors.
///
/// Note that the names of the column vectors here are `a`, `b`, and `c`, which differs from Godot's convention of `x`, `y`, and `z`. This is
/// because columns are the basis vectors of the transform, while rows represent the X/Y/Z coordinates of each vector. Although basis vectors are
/// the _transformed_ unit vectors of X/Y/Z axes, they have no direct relation to those axes in the _transformed_ coordinate system. Thus, an
/// independent notion of a, b, c does not suggest such a relation. Furthermore, there are sometimes expressions such as `x.x`, `x.y`, `y.x`
/// etc. They are typically hard to read and error-prone to write. Having `a.x`, `a.y`, `b.x` makes things more understandable.
///
/// # All matrix types
///
/// | Dimension | Orthogonal basis | Affine transform | Projective transform |
/// |-----------|--------------------|-----------------------|----------------------|
/// | 2D | | [`Transform2D`] (2x3) | |
/// | 3D | **`Basis`** (3x3) | [`Transform3D`] (3x4) | [`Projection`] (4x4) |
///
/// [`Transform2D`]: crate::builtin::Transform2D
/// [`Transform3D`]: crate::builtin::Transform3D
/// [`Projection`]: crate::builtin::Projection
///
/// # Godot docs
///
/// [`Basis` (stable)](https://docs.godotengine.org/en/stable/classes/class_basis.html)
#[derive(Copy, Clone, PartialEq, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Basis {
/// The rows of the matrix. These are *not* the basis vectors.
///
/// To access the basis vectors see [`col_a()`](Self::col_a), [`set_col_a()`](Self::set_col_a),
/// [`col_b()`](Self::col_b), [`set_col_b()`](Self::set_col_b), [`col_c`](Self::col_c()),
/// [`set_col_c()`](Self::set_col_c).
pub rows: [Vector3; 3],
}
impl Basis {
/// The identity basis, with no rotation or scaling applied.
///
/// _Godot equivalent: `Basis.IDENTITY`_
pub const IDENTITY: Self = Self::from_diagonal(1.0, 1.0, 1.0);
/// The basis that will flip something along the X axis when used in a transformation.
///
/// _Godot equivalent: `Basis.FLIP_X`_
pub const FLIP_X: Self = Self::from_diagonal(-1.0, 1.0, 1.0);
/// The basis that will flip something along the Y axis when used in a transformation.
///
/// _Godot equivalent: `Basis.FLIP_Y`_
pub const FLIP_Y: Self = Self::from_diagonal(1.0, -1.0, 1.0);
/// The basis that will flip something along the Z axis when used in a transformation.
///
/// _Godot equivalent: `Basis.FLIP_Z`_
pub const FLIP_Z: Self = Self::from_diagonal(1.0, 1.0, -1.0);
/// Create a new basis from 3 row vectors. These are *not* basis vectors.
pub const fn from_rows(x: Vector3, y: Vector3, z: Vector3) -> Self {
Self { rows: [x, y, z] }
}
/// Create a new basis from 3 column vectors.
pub const fn from_cols(a: Vector3, b: Vector3, c: Vector3) -> Self {
Self::from_rows_array(&[a.x, b.x, c.x, a.y, b.y, c.y, a.z, b.z, c.z])
}
/// Create a `Basis` from an axis and angle.
///
/// _Godot equivalent: `Basis(Vector3 axis, float angle)`_
pub fn from_axis_angle(axis: Vector3, angle: real) -> Self {
RMat3::from_axis_angle(axis.to_glam(), angle).to_front()
}
/// Create a diagonal matrix from the given values.
pub const fn from_diagonal(x: real, y: real, z: real) -> Self {
Self {
rows: [
Vector3::new(x, 0.0, 0.0),
Vector3::new(0.0, y, 0.0),
Vector3::new(0.0, 0.0, z),
],
}
}
/// Create a diagonal matrix from the given values.
///
/// _Godot equivalent: `Basis.from_scale(Vector3 scale)`
pub const fn from_scale(scale: Vector3) -> Self {
Self::from_diagonal(scale.x, scale.y, scale.z)
}
const fn from_rows_array(rows: &[real; 9]) -> Self {
let [ax, bx, cx, ay, by, cy, az, bz, cz] = rows;
Self::from_rows(
Vector3::new(*ax, *bx, *cx),
Vector3::new(*ay, *by, *cy),
Vector3::new(*az, *bz, *cz),
)
}
/// Create a `Basis` from a `Quaternion`.
///
/// _Godot equivalent: `Basis(Quaternion from)`_
pub fn from_quat(quat: Quaternion) -> Self {
RMat3::from_quat(quat.to_glam()).to_front()
}
/// Create a `Basis` from three angles `a`, `b`, and `c` interpreted
/// as Euler angles according to the given `EulerOrder`.
///
/// _Godot equivalent: `Basis.from_euler(Vector3 euler, int order)`_
pub fn from_euler(order: EulerOrder, angles: Vector3) -> Self {
// Translated from "Basis::from_euler" in
// https://github.com/godotengine/godot/blob/master/core/math/basis.cpp
// We can't use glam to do these conversions since glam uses intrinsic rotations
// whereas godot uses extrinsic rotations.
// see https://github.com/bitshifter/glam-rs/issues/337
let Vector3 { x: a, y: b, z: c } = angles;
let xmat =
Basis::from_rows_array(&[1.0, 0.0, 0.0, 0.0, a.cos(), -a.sin(), 0.0, a.sin(), a.cos()]);
let ymat =
Basis::from_rows_array(&[b.cos(), 0.0, b.sin(), 0.0, 1.0, 0.0, -b.sin(), 0.0, b.cos()]);
let zmat =
Basis::from_rows_array(&[c.cos(), -c.sin(), 0.0, c.sin(), c.cos(), 0.0, 0.0, 0.0, 1.0]);
match order {
EulerOrder::XYZ => xmat * ymat * zmat,
EulerOrder::XZY => xmat * zmat * ymat,
EulerOrder::YXZ => ymat * xmat * zmat,
EulerOrder::YZX => ymat * zmat * xmat,
EulerOrder::ZXY => zmat * xmat * ymat,
EulerOrder::ZYX => zmat * ymat * xmat,
}
}
/// If `use_model_front` is true, the +Z axis (asset front) is treated as forward (implies +X is left)
/// and points toward the target position. By default, the -Z axis (camera forward) is treated as forward
/// (implies +X is right).
///
/// _Godot equivalent: `Basis.looking_at()`_
pub fn new_looking_at(target: Vector3, up: Vector3, use_model_front: bool) -> Self {
super::inner::InnerBasis::looking_at(target, up, use_model_front)
}
/// Creates a `[Vector3; 3]` with the columns of the `Basis`.
pub fn to_cols(&self) -> [Vector3; 3] {
self.transposed().rows
}
/// Creates a [`Quaternion`] representing the same rotation as this basis.
///
/// _Godot equivalent: `Basis.get_rotation_quaternion()`_
#[doc(alias = "get_rotation_quaternion")]
pub fn to_quat(&self) -> Quaternion {
RQuat::from_mat3(&self.orthonormalized().to_glam()).to_front()
}
const fn to_rows_array(self) -> [real; 9] {
let [Vector3 {
x: ax,
y: bx,
z: cx,
}, Vector3 {
x: ay,
y: by,
z: cy,
}, Vector3 {
x: az,
y: bz,
z: cz,
}] = self.rows;
[ax, bx, cx, ay, by, cy, az, bz, cz]
}
/// Returns the scale of the matrix.
///
/// _Godot equivalent: `Basis.get_scale()`_
#[must_use]
pub fn scale(&self) -> Vector3 {
let det = self.determinant();
let det_sign = if det < 0.0 { -1.0 } else { 1.0 };
Vector3::new(
self.col_a().length(),
self.col_b().length(),
self.col_c().length(),
) * det_sign
}
/// Returns the rotation of the matrix in euler angles.
///
/// The order of the angles are given by `order`.
///
/// _Godot equivalent: `Basis.get_euler()`_
pub fn to_euler(&self, order: EulerOrder) -> Vector3 {
use glam::swizzles::Vec3Swizzles as _;
let col_a = self.col_a().to_glam();
let col_b = self.col_b().to_glam();
let col_c = self.col_c().to_glam();
let row_a = self.rows[0].to_glam();
let row_b = self.rows[1].to_glam();
let row_c = self.rows[2].to_glam();
let major = match order {
EulerOrder::XYZ => self.rows[0].z,
EulerOrder::XZY => self.rows[0].y,
EulerOrder::YXZ => self.rows[1].z,
EulerOrder::YZX => self.rows[1].x,
EulerOrder::ZXY => self.rows[2].y,
EulerOrder::ZYX => self.rows[2].x,
};
// Return the simplest forms for pure rotations
if let Some(pure_rotation) = match order {
EulerOrder::XYZ => self
.to_euler_pure_rotation(major, 1, row_a.zx())
.map(RVec3::yxz),
EulerOrder::YXZ => {
self.to_euler_pure_rotation(major, 0, RVec2::new(-major, self.rows[1].y))
}
_ => None,
} {
return pure_rotation.to_front();
}
match order {
EulerOrder::XYZ => {
-Self::to_euler_inner(major, col_c.yz(), row_a.yx(), col_b.zy()).yxz()
}
EulerOrder::XZY => {
Self::to_euler_inner(major, col_b.zy(), row_a.zx(), col_c.yz()).yzx()
}
EulerOrder::YXZ => {
let mut vec = Self::to_euler_inner(major, col_c.xz(), row_b.xy(), row_a.yx());
if Self::is_between_neg1_1(major).is_lt() {
vec.y = -vec.y;
}
vec
}
EulerOrder::YZX => {
-Self::to_euler_inner(major, row_b.zy(), col_a.zx(), row_c.yz()).yzx()
}
EulerOrder::ZXY => {
-Self::to_euler_inner(major, row_c.xz(), col_b.xy(), row_a.zx()).xyz()
}
EulerOrder::ZYX => {
Self::to_euler_inner(major, col_a.yx(), row_c.yz(), col_b.xy()).zxy()
}
}
.to_front()
}
fn is_between_neg1_1(f: real) -> Ordering {
if f >= (1.0 - real::CMP_EPSILON) {
Ordering::Greater
} else if f <= -(1.0 - real::CMP_EPSILON) {
Ordering::Less
} else {
Ordering::Equal
}
}
/// Check if the element at `basis_{i,i}` is 1, and all the other values in
/// that row and column are 0.
fn is_identity_index(&self, index: usize) -> bool {
let row = self.rows[index];
let col = self.transposed().rows[index];
if row != col {
return false;
}
match index {
0 => row == Vector3::RIGHT,
1 => row == Vector3::UP,
2 => row == Vector3::BACK,
_ => panic!("Unknown Index {index}"),
}
}
#[allow(clippy::wrong_self_convention)]
fn to_euler_pure_rotation(
&self,
major: real,
index: usize,
rotation_vec: RVec2,
) -> Option<RVec3> {
if Self::is_between_neg1_1(major).is_ne() {
return None;
}
if !self.is_identity_index(index) {
return None;
}
Some(RVec3::new(
real::atan2(rotation_vec.x, rotation_vec.y),
0.0,
0.0,
))
}
#[allow(clippy::wrong_self_convention)]
fn to_euler_inner(major: real, pair0: RVec2, pair1: RVec2, pair2: RVec2) -> RVec3 {
match Self::is_between_neg1_1(major) {
// It's -1
Ordering::Less => RVec3::new(FRAC_PI_2, -real::atan2(pair2.x, pair2.y), 0.0),
// Is it a pure rotation?
Ordering::Equal => RVec3::new(
real::asin(-major),
real::atan2(pair0.x, pair0.y),
real::atan2(pair1.x, pair1.y),
),
// It's 1
Ordering::Greater => RVec3::new(-FRAC_PI_2, -real::atan2(pair2.x, pair2.y), 0.0),
}
}
/// Returns the determinant of the matrix.
///
/// _Godot equivalent: `Basis.determinant()`_
pub fn determinant(&self) -> real {
self.to_glam().determinant()
}
/// Introduce an additional scaling specified by the given 3D scaling factor.
///
/// _Godot equivalent: `Basis.scaled()`_
#[must_use]
pub fn scaled(&self, scale: Vector3) -> Self {
Self::from_diagonal(scale.x, scale.y, scale.z) * (*self)
}
/// Returns the inverse of the matrix.
///
/// _Godot equivalent: `Basis.inverse()`_
#[must_use]
pub fn inverse(&self) -> Basis {
self.glam(|mat| mat.inverse())
}
/// Returns the transposed version of the matrix.
///
/// _Godot equivalent: `Basis.transposed()`_
#[must_use]
pub fn transposed(&self) -> Self {
Self::from_cols(self.rows[0], self.rows[1], self.rows[2])
}
/// ⚠️ Returns the orthonormalized version of the matrix (useful to call from
/// time to time to avoid rounding error for orthogonal matrices). This
/// performs a Gram-Schmidt orthonormalization on the basis of the matrix.
///
/// # Panics
///
/// If the determinant of the matrix is 0.
///
/// _Godot equivalent: `Basis.orthonormalized()`_
#[must_use]
pub fn orthonormalized(&self) -> Self {
assert!(
!self.determinant().is_zero_approx(),
"Determinant should not be zero."
);
// Gram-Schmidt Process
let mut x = self.col_a();
let mut y = self.col_b();
let mut z = self.col_c();
x = x.normalized();
y = y - x * x.dot(y);
y = y.normalized();
z = z - x * x.dot(z) - y * y.dot(z);
z = z.normalized();
Self::from_cols(x, y, z)
}
/// Introduce an additional rotation around the given `axis` by `angle`
/// (in radians). The axis must be a normalized vector.
///
/// _Godot equivalent: `Basis.rotated()`_
#[must_use]
pub fn rotated(&self, axis: Vector3, angle: real) -> Self {
Self::from_axis_angle(axis, angle) * (*self)
}
/// Assuming that the matrix is a proper rotation matrix, slerp performs
/// a spherical-linear interpolation with another rotation matrix.
///
/// _Godot equivalent: `Basis.slerp()`_
#[must_use]
pub fn slerp(&self, other: &Self, weight: real) -> Self {
let from = self.to_quat();
let to = other.to_quat();
let mut result = Self::from_quat(from.slerp(to, weight));
for i in 0..3 {
result.rows[i] *= self.rows[i].length().lerp(other.rows[i].length(), weight);
}
result
}
/// Transposed dot product with the X axis (column) of the matrix.
///
/// _Godot equivalent: `Basis.tdotx()`_
#[must_use]
pub fn tdotx(&self, with: Vector3) -> real {
self.col_a().dot(with)
}
/// Transposed dot product with the Y axis (column) of the matrix.
///
/// _Godot equivalent: `Basis.tdoty()`_
#[must_use]
pub fn tdoty(&self, with: Vector3) -> real {
self.col_b().dot(with)
}
/// Transposed dot product with the Z axis (column) of the matrix.
///
/// _Godot equivalent: `Basis.tdotz()`_
#[must_use]
pub fn tdotz(&self, with: Vector3) -> real {
self.col_c().dot(with)
}
/// Returns `true` if this basis is finite. Meaning each element of the
/// matrix is not `NaN`, positive infinity, or negative infinity.
///
/// _Godot equivalent: `Basis.is_finite()`_
pub fn is_finite(&self) -> bool {
self.rows[0].is_finite() && self.rows[1].is_finite() && self.rows[2].is_finite()
}
/// Returns the first column of the matrix,
///
/// _Godot equivalent: `Basis.x`_, see [`Basis`] for why it's changed
#[doc(alias = "x")]
#[must_use]
pub fn col_a(&self) -> Vector3 {
Vector3::new(self.rows[0].x, self.rows[1].x, self.rows[2].x)
}
/// Set the values of the first column of the matrix.
pub fn set_col_a(&mut self, col: Vector3) {
self.rows[0].x = col.x;
self.rows[1].x = col.y;
self.rows[2].x = col.z;
}
/// Returns the second column of the matrix,
///
/// _Godot equivalent: `Basis.y`_, see [`Basis`] for why it's changed
#[doc(alias = "y")]
#[must_use]
pub fn col_b(&self) -> Vector3 {
Vector3::new(self.rows[0].y, self.rows[1].y, self.rows[2].y)
}
/// Set the values of the second column of the matrix.
pub fn set_col_b(&mut self, col: Vector3) {
self.rows[0].y = col.x;
self.rows[1].y = col.y;
self.rows[2].y = col.z;
}
/// Returns the third column of the matrix,
///
/// _Godot equivalent: `Basis.z`_, see [`Basis`] for why it's changed
#[doc(alias = "z")]
#[must_use]
pub fn col_c(&self) -> Vector3 {
Vector3::new(self.rows[0].z, self.rows[1].z, self.rows[2].z)
}
/// Set the values of the third column of the matrix.
pub fn set_col_c(&mut self, col: Vector3) {
self.rows[0].z = col.x;
self.rows[1].z = col.y;
self.rows[2].z = col.z;
}
}
impl Display for Basis {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// Godot output:
// [X: (1, 0, 0), Y: (0, 1, 0), Z: (0, 0, 1)]
// Where X,Y,Z are the columns
let [a, b, c] = self.to_cols();
write!(f, "[a: {a}, b: {b}, c: {c}]")
}
}
impl ApproxEq for Basis {
/// Returns if this basis and `other` are approximately equal, by calling `is_equal_approx` on each row.
fn approx_eq(&self, other: &Self) -> bool {
Vector3::approx_eq(&self.rows[0], &other.rows[0])
&& Vector3::approx_eq(&self.rows[1], &other.rows[1])
&& Vector3::approx_eq(&self.rows[2], &other.rows[2])
}
}
impl GlamConv for Basis {
type Glam = RMat3;
}
impl GlamType for RMat3 {
type Mapped = Basis;
fn to_front(&self) -> Self::Mapped {
Basis::from_rows_array(&self.to_cols_array()).transposed()
}
fn from_front(mapped: &Self::Mapped) -> Self {
Self::from_cols_array(&mapped.to_rows_array()).transpose()
}
}
#[cfg(not(feature = "double-precision"))]
impl GlamType for glam::Mat3A {
type Mapped = Basis;
fn to_front(&self) -> Self::Mapped {
Basis::from_rows_array(&self.to_cols_array()).transposed()
}
fn from_front(mapped: &Self::Mapped) -> Self {
Self::from_cols_array(&mapped.to_rows_array()).transpose()
}
}
impl Default for Basis {
fn default() -> Self {
Self::IDENTITY
}
}
impl Mul for Basis {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
self.glam2(&rhs, |a, b| a * b)
}
}
impl Mul<real> for Basis {
type Output = Self;
fn mul(mut self, rhs: real) -> Self::Output {
self *= rhs;
self
}
}
impl MulAssign<real> for Basis {
fn mul_assign(&mut self, rhs: real) {
self.rows[0] *= rhs;
self.rows[1] *= rhs;
self.rows[2] *= rhs;
}
}
impl Mul<Vector3> for Basis {
type Output = Vector3;
fn mul(self, rhs: Vector3) -> Self::Output {
self.glam2(&rhs, |a, b| a * b)
}
}
// SAFETY:
// This type is represented as `Self` in Godot, so `*mut Self` is sound.
unsafe impl GodotFfi for Basis {
fn variant_type() -> sys::VariantType {
sys::VariantType::BASIS
}
ffi_methods! { type sys::GDExtensionTypePtr = *mut Self; .. }
}
crate::meta::impl_godot_as_self!(Basis);
#[cfg(test)]
mod test {
use crate::builtin::real_consts::{FRAC_PI_2, PI};
use crate::assert_eq_approx;
use super::*;
fn deg_to_rad(rotation: Vector3) -> Vector3 {
Vector3::new(
rotation.x.to_radians(),
rotation.y.to_radians(),
rotation.z.to_radians(),
)
}
// Translated from Godot
fn test_rotation(deg_original_euler: Vector3, rot_order: EulerOrder) {
// This test:
// 1. Converts the rotation vector from deg to rad.
// 2. Converts euler to basis.
// 3. Converts the above basis back into euler.
// 4. Converts the above euler into basis again.
// 5. Compares the basis obtained in step 2 with the basis of step 4
//
// The conversion "basis to euler", done in the step 3, may be different from
// the original euler, even if the final rotation are the same.
// This happens because there are more ways to represents the same rotation,
// both valid, using eulers.
// For this reason is necessary to convert that euler back to basis and finally
// compares it.
//
// In this way we can assert that both functions: basis to euler / euler to basis
// are correct.
// Euler to rotation
let original_euler: Vector3 = deg_to_rad(deg_original_euler);
let to_rotation: Basis = Basis::from_euler(rot_order, original_euler);
// Euler from rotation
let euler_from_rotation: Vector3 = to_rotation.to_euler(rot_order);
let rotation_from_computed_euler: Basis = Basis::from_euler(rot_order, euler_from_rotation);
let res: Basis = to_rotation.inverse() * rotation_from_computed_euler;
assert!(
(res.col_a() - Vector3::RIGHT).length() <= 0.1,
"Fail due to X {} with {deg_original_euler} using {rot_order:?}",
res.col_a()
);
assert!(
(res.col_b() - Vector3::UP).length() <= 0.1,
"Fail due to Y {} with {deg_original_euler} using {rot_order:?}",
res.col_b()
);
assert!(
(res.col_c() - Vector3::BACK).length() <= 0.1,
"Fail due to Z {} with {deg_original_euler} using {rot_order:?}",
res.col_c()
);
// Double check `to_rotation` decomposing with XYZ rotation order.
let euler_xyz_from_rotation: Vector3 = to_rotation.to_euler(EulerOrder::XYZ);
let rotation_from_xyz_computed_euler: Basis =
Basis::from_euler(EulerOrder::XYZ, euler_xyz_from_rotation);
let res = to_rotation.inverse() * rotation_from_xyz_computed_euler;
assert!(
(res.col_a() - Vector3::new(1.0, 0.0, 0.0)).length() <= 0.1,
"Double check with XYZ rot order failed, due to X {} with {deg_original_euler} using {rot_order:?}",
res.col_a(),
);
assert!(
(res.col_b() - Vector3::new(0.0, 1.0, 0.0)).length() <= 0.1,
"Double check with XYZ rot order failed, due to Y {} with {deg_original_euler} using {rot_order:?}",
res.col_b(),
);
assert!(
(res.col_c() - Vector3::new(0.0, 0.0, 1.0)).length() <= 0.1,
"Double check with XYZ rot order failed, due to Z {} with {deg_original_euler} using {rot_order:?}",
res.col_c(),
);
}
#[test]
fn consts_behavior_correct() {
let v = Vector3::new(1.0, 2.0, 3.0);
assert_eq_approx!(Basis::IDENTITY * v, v);
assert_eq_approx!(Basis::FLIP_X * v, Vector3::new(-v.x, v.y, v.z),);
assert_eq_approx!(Basis::FLIP_Y * v, Vector3::new(v.x, -v.y, v.z),);
assert_eq_approx!(Basis::FLIP_Z * v, Vector3::new(v.x, v.y, -v.z),);
}
#[test]
fn basic_rotation_correct() {
assert_eq_approx!(
Basis::from_axis_angle(Vector3::FORWARD, 0.0) * Vector3::RIGHT,
Vector3::RIGHT,
);
assert_eq_approx!(
Basis::from_axis_angle(Vector3::FORWARD, FRAC_PI_2) * Vector3::RIGHT,
Vector3::DOWN,
);
assert_eq_approx!(
Basis::from_axis_angle(Vector3::FORWARD, PI) * Vector3::RIGHT,
Vector3::LEFT,
);
assert_eq_approx!(
Basis::from_axis_angle(Vector3::FORWARD, PI + FRAC_PI_2) * Vector3::RIGHT,
Vector3::UP,
);
}
// Translated from Godot
#[test]
fn basis_euler_conversions() {
let euler_order_to_test: Vec<EulerOrder> = vec![
EulerOrder::XYZ,
EulerOrder::XZY,
EulerOrder::YZX,
EulerOrder::YXZ,
EulerOrder::ZXY,
EulerOrder::ZYX,
];
let vectors_to_test: Vec<Vector3> = vec![
Vector3::new(0.0, 0.0, 0.0),
Vector3::new(0.5, 0.5, 0.5),
Vector3::new(-0.5, -0.5, -0.5),
Vector3::new(40.0, 40.0, 40.0),
Vector3::new(-40.0, -40.0, -40.0),
Vector3::new(0.0, 0.0, -90.0),
Vector3::new(0.0, -90.0, 0.0),
Vector3::new(-90.0, 0.0, 0.0),
Vector3::new(0.0, 0.0, 90.0),
Vector3::new(0.0, 90.0, 0.0),
Vector3::new(90.0, 0.0, 0.0),
Vector3::new(0.0, 0.0, -30.0),
Vector3::new(0.0, -30.0, 0.0),
Vector3::new(-30.0, 0.0, 0.0),
Vector3::new(0.0, 0.0, 30.0),
Vector3::new(0.0, 30.0, 0.0),
Vector3::new(30.0, 0.0, 0.0),
Vector3::new(0.5, 50.0, 20.0),
Vector3::new(-0.5, -50.0, -20.0),
Vector3::new(0.5, 0.0, 90.0),
Vector3::new(0.5, 0.0, -90.0),
Vector3::new(360.0, 360.0, 360.0),
Vector3::new(-360.0, -360.0, -360.0),
Vector3::new(-90.0, 60.0, -90.0),
Vector3::new(90.0, 60.0, -90.0),
Vector3::new(90.0, -60.0, -90.0),
Vector3::new(-90.0, -60.0, -90.0),
Vector3::new(-90.0, 60.0, 90.0),
Vector3::new(90.0, 60.0, 90.0),
Vector3::new(90.0, -60.0, 90.0),
Vector3::new(-90.0, -60.0, 90.0),
Vector3::new(60.0, 90.0, -40.0),
Vector3::new(60.0, -90.0, -40.0),
Vector3::new(-60.0, -90.0, -40.0),
Vector3::new(-60.0, 90.0, 40.0),
Vector3::new(60.0, 90.0, 40.0),
Vector3::new(60.0, -90.0, 40.0),
Vector3::new(-60.0, -90.0, 40.0),
Vector3::new(-90.0, 90.0, -90.0),
Vector3::new(90.0, 90.0, -90.0),
Vector3::new(90.0, -90.0, -90.0),
Vector3::new(-90.0, -90.0, -90.0),
Vector3::new(-90.0, 90.0, 90.0),
Vector3::new(90.0, 90.0, 90.0),
Vector3::new(90.0, -90.0, 90.0),
Vector3::new(20.0, 150.0, 30.0),
Vector3::new(20.0, -150.0, 30.0),
Vector3::new(-120.0, -150.0, 30.0),
Vector3::new(-120.0, -150.0, -130.0),
Vector3::new(120.0, -150.0, -130.0),
Vector3::new(120.0, 150.0, -130.0),
Vector3::new(120.0, 150.0, 130.0),
];
for order in euler_order_to_test.iter() {
for vector in vectors_to_test.iter() {
test_rotation(*vector, *order);
}
}
}
// Translated from Godot
#[test]
fn basis_finite_number_test() {
let x: Vector3 = Vector3::new(0.0, 1.0, 2.0);
let infinite: Vector3 = Vector3::new(real::NAN, real::NAN, real::NAN);
assert!(
Basis::from_cols(x, x, x).is_finite(),
"Basis with all components finite should be finite"
);
assert!(
!Basis::from_cols(infinite, x, x).is_finite(),
"Basis with one component infinite should not be finite."
);
assert!(
!Basis::from_cols(x, infinite, x).is_finite(),
"Basis with one component infinite should not be finite."
);
assert!(
!Basis::from_cols(x, x, infinite).is_finite(),
"Basis with one component infinite should not be finite."
);
assert!(
!Basis::from_cols(infinite, infinite, x).is_finite(),
"Basis with two components infinite should not be finite."
);
assert!(
!Basis::from_cols(infinite, x, infinite).is_finite(),
"Basis with two components infinite should not be finite."
);
assert!(
!Basis::from_cols(x, infinite, infinite).is_finite(),
"Basis with two components infinite should not be finite."
);
assert!(
!Basis::from_cols(infinite, infinite, infinite).is_finite(),
"Basis with three components infinite should not be finite."
);
}
#[cfg(feature = "serde")]
#[test]
fn serde_roundtrip() {
let basis = Basis::IDENTITY;
let expected_json = "{\"rows\":[{\"x\":1.0,\"y\":0.0,\"z\":0.0},{\"x\":0.0,\"y\":1.0,\"z\":0.0},{\"x\":0.0,\"y\":0.0,\"z\":1.0}]}";
crate::builtin::test_utils::roundtrip(&basis, expected_json);
}
}