godot_core/builtin/transform3d.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
/*
* Copyright (c) godot-rust; Bromeon and contributors.
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*/
use godot_ffi as sys;
use sys::{ffi_methods, GodotFfi};
use crate::builtin::math::{ApproxEq, GlamConv, GlamType};
use crate::builtin::{real, Aabb, Basis, Plane, Projection, RAffine3, Vector3};
use std::fmt::Display;
use std::ops::Mul;
/// Affine 3D transform (3x4 matrix).
///
/// Used for 3D linear transformations. Uses a basis + origin representation.
///
/// Expressed as a 3x4 matrix, this transform consists of 3 basis (column)
/// vectors `a`, `b`, `c` as well as an origin `o`:
/// ```text
/// [ a.x b.x c.x o.x ]
/// [ a.y b.y c.y o.y ]
/// [ a.z b.z c.z o.z ]
/// ```
///
/// # All matrix types
///
/// | Dimension | Orthogonal basis | Affine transform | Projective transform |
/// |-----------|------------------|-------------------------|----------------------|
/// | 2D | | [`Transform2D`] (2x3) | |
/// | 3D | [`Basis`] (3x3) | **`Transform3D`** (3x4) | [`Projection`] (4x4) |
///
/// [`Basis`]: Basis
/// [`Transform2D`]: crate::builtin::Transform2D
/// [`Projection`]: Projection
///
/// # Godot docs
///
/// [`Transform3D` (stable)](https://docs.godotengine.org/en/stable/classes/class_transform3d.html)
#[derive(Default, Copy, Clone, PartialEq, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Transform3D {
/// The basis is a matrix containing 3 vectors as its columns. They can be
/// interpreted as the basis vectors of the transformed coordinate system.
pub basis: Basis,
/// The new origin of the transformed coordinate system.
pub origin: Vector3,
}
impl Transform3D {
/// The identity transform, with no translation, rotation or scaling
/// applied. When applied to other data structures, `IDENTITY` performs no
/// transformation.
///
/// _Godot equivalent: `Transform3D.IDENTITY`_
pub const IDENTITY: Self = Self::new(Basis::IDENTITY, Vector3::ZERO);
/// `Transform3D` with mirroring applied perpendicular to the YZ plane.
///
/// _Godot equivalent: `Transform3D.FLIP_X`_
pub const FLIP_X: Self = Self::new(Basis::FLIP_X, Vector3::ZERO);
/// `Transform3D` with mirroring applied perpendicular to the XZ plane.
///
/// _Godot equivalent: `Transform3D.FLIP_Y`_
pub const FLIP_Y: Self = Self::new(Basis::FLIP_Y, Vector3::ZERO);
/// `Transform3D` with mirroring applied perpendicular to the XY plane.
///
/// _Godot equivalent: `Transform3D.FLIP_Z`_
pub const FLIP_Z: Self = Self::new(Basis::FLIP_Z, Vector3::ZERO);
/// Create a new transform from a [`Basis`] and a [`Vector3`].
///
/// _Godot equivalent: `Transform3D(Basis basis, Vector3 origin)`_
pub const fn new(basis: Basis, origin: Vector3) -> Self {
Self { basis, origin }
}
/// Create a new transform from 4 matrix-columns.
///
/// _Godot equivalent: `Transform3D(Vector3 x_axis, Vector3 y_axis, Vector3 z_axis, Vector3 origin)`_, see [`Basis`][crate::builtin::Basis]
/// for why it's changed
pub const fn from_cols(a: Vector3, b: Vector3, c: Vector3, origin: Vector3) -> Self {
Self {
basis: Basis::from_cols(a, b, c),
origin,
}
}
/// Constructs a `Transform3D` from a `Projection` by trimming the last row of the projection matrix.
///
/// _Godot equivalent: `Transform3D(Projection from)`_
pub fn from_projection(proj: &Projection) -> Self {
let a = Vector3::new(proj.cols[0].x, proj.cols[0].y, proj.cols[0].z);
let b = Vector3::new(proj.cols[1].x, proj.cols[1].y, proj.cols[1].z);
let c = Vector3::new(proj.cols[2].x, proj.cols[2].y, proj.cols[2].z);
let o = Vector3::new(proj.cols[3].x, proj.cols[3].y, proj.cols[3].z);
Self {
basis: Basis::from_cols(a, b, c),
origin: o,
}
}
/// Unstable, used to simplify codegen. Too many parameters for public API and easy to have off-by-one, `from_cols()` is preferred.
#[doc(hidden)]
#[rustfmt::skip]
#[allow(clippy::too_many_arguments)]
pub const fn __internal_codegen(
ax: real, ay: real, az: real,
bx: real, by: real, bz: real,
cx: real, cy: real, cz: real,
ox: real, oy: real, oz: real
) -> Self {
Self::from_cols(
Vector3::new(ax, ay, az),
Vector3::new(bx, by, bz),
Vector3::new(cx, cy, cz),
Vector3::new(ox, oy, oz),
)
}
/// Returns the inverse of the transform, under the assumption that the
/// transformation is composed of rotation, scaling and translation.
#[must_use]
pub fn affine_inverse(&self) -> Self {
self.glam(|aff| aff.inverse())
}
/// Returns a transform interpolated between this transform and another by
/// a given weight (on the range of 0.0 to 1.0).
#[must_use]
pub fn interpolate_with(&self, other: &Self, weight: real) -> Self {
let src_scale = self.basis.scale();
let src_rot = self.basis.to_quat().normalized();
let src_loc = self.origin;
let dst_scale = other.basis.scale();
let dst_rot = other.basis.to_quat().normalized();
let dst_loc = other.origin;
let mut basis = Basis::from_scale(src_scale.lerp(dst_scale, weight));
basis = Basis::from_quat(src_rot.slerp(dst_rot, weight)) * basis;
Self {
basis,
origin: src_loc.lerp(dst_loc, weight),
}
}
/// Returns true if this transform is finite by calling `is_finite` on the
/// basis and origin.
pub fn is_finite(&self) -> bool {
self.basis.is_finite() && self.origin.is_finite()
}
#[must_use]
pub fn looking_at(&self, target: Vector3, up: Vector3, use_model_front: bool) -> Self {
Self {
basis: Basis::new_looking_at(target - self.origin, up, use_model_front),
origin: self.origin,
}
}
/// Returns the transform with the basis orthogonal (90 degrees), and
/// normalized axis vectors (scale of 1 or -1).
///
/// _Godot equivalent: Transform3D.orthonormalized()_
#[must_use]
pub fn orthonormalized(&self) -> Self {
Self {
basis: self.basis.orthonormalized(),
origin: self.origin,
}
}
/// Returns a copy of the transform rotated by the given `angle` (in radians).
/// This method is an optimized version of multiplying the given transform `X`
/// with a corresponding rotation transform `R` from the left, i.e., `R * X`.
/// This can be seen as transforming with respect to the global/parent frame.
///
/// _Godot equivalent: `Transform2D.rotated()`_
#[must_use]
pub fn rotated(&self, axis: Vector3, angle: real) -> Self {
let rotation = Basis::from_axis_angle(axis, angle);
Self {
basis: rotation * self.basis,
origin: rotation * self.origin,
}
}
/// Returns a copy of the transform rotated by the given `angle` (in radians).
/// This method is an optimized version of multiplying the given transform `X`
/// with a corresponding rotation transform `R` from the right, i.e., `X * R`.
/// This can be seen as transforming with respect to the local frame.
///
/// _Godot equivalent: `Transform2D.rotated_local()`_
#[must_use]
pub fn rotated_local(&self, axis: Vector3, angle: real) -> Self {
Self {
basis: self.basis * Basis::from_axis_angle(axis, angle),
origin: self.origin,
}
}
/// Returns a copy of the transform scaled by the given scale factor.
/// This method is an optimized version of multiplying the given transform `X`
/// with a corresponding scaling transform `S` from the left, i.e., `S * X`.
/// This can be seen as transforming with respect to the global/parent frame.
///
/// _Godot equivalent: `Transform2D.scaled()`_
#[must_use]
pub fn scaled(&self, scale: Vector3) -> Self {
Self {
basis: Basis::from_scale(scale) * self.basis,
origin: self.origin * scale,
}
}
/// Returns a copy of the transform scaled by the given scale factor.
/// This method is an optimized version of multiplying the given transform `X`
/// with a corresponding scaling transform `S` from the right, i.e., `X * S`.
/// This can be seen as transforming with respect to the local frame.
///
/// _Godot equivalent: `Transform2D.scaled_local()`_
#[must_use]
pub fn scaled_local(&self, scale: Vector3) -> Self {
Self {
basis: self.basis * Basis::from_scale(scale),
origin: self.origin,
}
}
/// Returns a copy of the transform translated by the given offset.
/// This method is an optimized version of multiplying the given transform `X`
/// with a corresponding translation transform `T` from the left, i.e., `T * X`.
/// This can be seen as transforming with respect to the global/parent frame.
///
/// _Godot equivalent: `Transform2D.translated()`_
#[must_use]
pub fn translated(&self, offset: Vector3) -> Self {
Self {
basis: self.basis,
origin: self.origin + offset,
}
}
/// Returns a copy of the transform translated by the given offset.
/// This method is an optimized version of multiplying the given transform `X`
/// with a corresponding translation transform `T` from the right, i.e., `X * T`.
/// This can be seen as transforming with respect to the local frame.
///
/// _Godot equivalent: `Transform2D.translated()`_
#[must_use]
pub fn translated_local(&self, offset: Vector3) -> Self {
Self {
basis: self.basis,
origin: self.origin + (self.basis * offset),
}
}
}
impl Display for Transform3D {
/// Formats the value with the given formatter. [Read more](https://doc.rust-lang.org/1.79.0/core/fmt/trait.Display.html#tymethod.fmt)
///
/// The output is similar to Godot's, but calls the columns a/b/c instead of X/Y/Z. See [`Basis`][crate::builtin::Basis] for why.
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// Godot output:
// [X: (1, 2, 3), Y: (4, 5, 6), Z: (7, 8, 9), O: (10, 11, 12)]
// Where X,Y,Z,O are the columns
let [a, b, c] = self.basis.to_cols();
let o = self.origin;
write!(f, "[a: {a}, b: {b}, c: {c}, o: {o}]")
}
}
impl From<Basis> for Transform3D {
/// Create a new transform with origin `(0,0,0)` from this basis.
fn from(basis: Basis) -> Self {
Self::new(basis, Vector3::ZERO)
}
}
impl Mul for Transform3D {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
self.glam2(&rhs, |a, b| a * b)
}
}
impl Mul<Vector3> for Transform3D {
type Output = Vector3;
fn mul(self, rhs: Vector3) -> Self::Output {
self.glam2(&rhs, |t, v| t.transform_point3(v))
}
}
impl Mul<real> for Transform3D {
type Output = Self;
fn mul(self, rhs: real) -> Self::Output {
Self {
basis: self.basis * rhs,
origin: self.origin * rhs,
}
}
}
impl Mul<Aabb> for Transform3D {
type Output = Aabb;
/// Transforms each coordinate in `rhs.position` and `rhs.end()` individually by this transform, then
/// creates an `Aabb` containing all of them.
fn mul(self, rhs: Aabb) -> Self::Output {
// https://web.archive.org/web/20220317024830/https://dev.theomader.com/transform-bounding-boxes/
let xa = self.basis.col_a() * rhs.position.x;
let xb = self.basis.col_a() * rhs.end().x;
let ya = self.basis.col_b() * rhs.position.y;
let yb = self.basis.col_b() * rhs.end().y;
let za = self.basis.col_c() * rhs.position.z;
let zb = self.basis.col_c() * rhs.end().z;
let position = Vector3::coord_min(xa, xb)
+ Vector3::coord_min(ya, yb)
+ Vector3::coord_min(za, zb)
+ self.origin;
let end = Vector3::coord_max(xa, xb)
+ Vector3::coord_max(ya, yb)
+ Vector3::coord_max(za, zb)
+ self.origin;
Aabb::new(position, end - position)
}
}
impl Mul<Plane> for Transform3D {
type Output = Plane;
fn mul(self, rhs: Plane) -> Self::Output {
let point = self * (rhs.normal * rhs.d);
let basis = self.basis.inverse().transposed();
Plane::from_point_normal(point, (basis * rhs.normal).normalized())
}
}
impl ApproxEq for Transform3D {
/// Returns if the two transforms are approximately equal, by comparing `basis` and `origin` separately.
fn approx_eq(&self, other: &Self) -> bool {
Basis::approx_eq(&self.basis, &other.basis)
&& Vector3::approx_eq(&self.origin, &other.origin)
}
}
impl GlamType for RAffine3 {
type Mapped = Transform3D;
fn to_front(&self) -> Self::Mapped {
Transform3D::new(self.matrix3.to_front(), self.translation.to_front())
}
// When `double-precision` is enabled this will complain. But it is
// needed for when it is not enabled.
#[allow(clippy::useless_conversion)]
fn from_front(mapped: &Self::Mapped) -> Self {
Self {
matrix3: mapped.basis.to_glam().into(),
translation: mapped.origin.to_glam().into(),
}
}
}
impl GlamConv for Transform3D {
type Glam = RAffine3;
}
// SAFETY:
// This type is represented as `Self` in Godot, so `*mut Self` is sound.
unsafe impl GodotFfi for Transform3D {
fn variant_type() -> sys::VariantType {
sys::VariantType::TRANSFORM3D
}
ffi_methods! { type sys::GDExtensionTypePtr = *mut Self; .. }
}
crate::meta::impl_godot_as_self!(Transform3D);
#[cfg(test)]
mod test {
use super::*;
// Tests translated from Godot.
const DUMMY_TRANSFORM: Transform3D = Transform3D::new(
Basis::from_cols(
Vector3::new(1.0, 2.0, 3.0),
Vector3::new(4.0, 5.0, 6.0),
Vector3::new(7.0, 8.0, 9.0),
),
Vector3::new(10.0, 11.0, 12.0),
);
#[test]
fn translation() {
let offset = Vector3::new(1.0, 2.0, 3.0);
// Both versions should give the same result applied to identity.
assert_eq!(
Transform3D::IDENTITY.translated(offset),
Transform3D::IDENTITY.translated_local(offset)
);
// Check both versions against left and right multiplications.
let t = Transform3D::IDENTITY.translated(offset);
assert_eq!(DUMMY_TRANSFORM.translated(offset), t * DUMMY_TRANSFORM);
assert_eq!(
DUMMY_TRANSFORM.translated_local(offset),
DUMMY_TRANSFORM * t
);
}
#[test]
fn scaling() {
let scaling = Vector3::new(1.0, 2.0, 3.0);
// Both versions should give the same result applied to identity.
assert_eq!(
Transform3D::IDENTITY.scaled(scaling),
Transform3D::IDENTITY.scaled_local(scaling)
);
// Check both versions against left and right multiplications.
let s = Transform3D::IDENTITY.scaled(scaling);
assert_eq!(DUMMY_TRANSFORM.scaled(scaling), s * DUMMY_TRANSFORM);
assert_eq!(DUMMY_TRANSFORM.scaled_local(scaling), DUMMY_TRANSFORM * s);
}
#[test]
fn rotation() {
let axis = Vector3::new(1.0, 2.0, 3.0).normalized();
let phi: real = 1.0;
// Both versions should give the same result applied to identity.
assert_eq!(
Transform3D::IDENTITY.rotated(axis, phi),
Transform3D::IDENTITY.rotated_local(axis, phi)
);
// Check both versions against left and right multiplications.
let r = Transform3D::IDENTITY.rotated(axis, phi);
assert_eq!(DUMMY_TRANSFORM.rotated(axis, phi), r * DUMMY_TRANSFORM);
assert_eq!(
DUMMY_TRANSFORM.rotated_local(axis, phi),
DUMMY_TRANSFORM * r
);
}
#[test]
fn finite_number_checks() {
let y = Vector3::new(0.0, 1.0, 2.0);
let infinite_vec = Vector3::new(real::NAN, real::NAN, real::NAN);
let x = Basis::from_rows(y, y, y);
let infinite_basis = Basis::from_rows(infinite_vec, infinite_vec, infinite_vec);
assert!(
Transform3D::new(x, y).is_finite(),
"Transform3D with all components finite should be finite",
);
assert!(
!Transform3D::new(x, infinite_vec).is_finite(),
"Transform3D with one component infinite should not be finite.",
);
assert!(
!Transform3D::new(infinite_basis, y).is_finite(),
"Transform3D with one component infinite should not be finite.",
);
assert!(
!Transform3D::new(infinite_basis, infinite_vec).is_finite(),
"Transform3D with two components infinite should not be finite.",
);
}
#[cfg(feature = "serde")]
#[test]
fn serde_roundtrip() {
let transform = Transform3D::default();
let expected_json = "{\"basis\":{\"rows\":[{\"x\":1.0,\"y\":0.0,\"z\":0.0},{\"x\":0.0,\"y\":1.0,\"z\":0.0},{\"x\":0.0,\"y\":0.0,\"z\":1.0}]},\"origin\":{\"x\":0.0,\"y\":0.0,\"z\":0.0}}";
crate::builtin::test_utils::roundtrip(&transform, expected_json);
}
}