1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
// Copyright 2022 The Goscript Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
//
// This code is adapted from the offical Go code written in Go
// with license as follows:
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements the collection of an interface's methods
// without relying on partially computed types of methods or interfaces
// for interface types declared at the package level.
//
// Because interfaces must not embed themselves, directly or indirectly,
// the method set of a valid interface can always be computed independent
// of any cycles that might exist via method signatures
//
// Except for blank method name and interface cycle errors, no errors
// are reported. Affected methods or embedded interfaces are silently
// dropped. Subsequent type-checking of the interface will check
// signatures and embedded interfaces and report errors at that time.
//
// Only info_from_type_lit should be called directly from code outside this file
// to compute an ifaceInfo.
#![allow(dead_code)]
use crate::SourceRead;
use super::super::obj;
use super::super::objects::{ObjKey, PackageKey, ScopeKey, TCObjects};
use super::super::scope::Scope;
use super::super::typ;
use super::check::{Checker, FilesContext, RcIfaceInfo};
use go_parser::ast::{self, Expr, Node};
use go_parser::{AstObjects, FieldKey, IdentKey, Map, Pos};
use std::borrow::Cow;
use std::cell::RefCell;
use std::collections::HashSet;
use std::fmt;
use std::fmt::Write;
use std::rc::Rc;
/// MethodInfo represents an interface method.
/// At least one of src or fun must be non-None.
/// (Methods declared in the current package have a non-None scope
/// and src, and eventually a non-None fun field; imported and pre-
/// declared methods have a None scope and src, and only a non-None
/// fun field.)
#[derive(Clone, Debug)]
pub struct MethodInfo {
data: Rc<RefCell<MethodInfoData>>,
}
#[derive(Debug)]
struct MethodInfoData {
// scope of interface method; or None
scope: Option<ScopeKey>,
// syntax tree representation of interface method; or None
src: Option<FieldKey>,
// corresponding fully type-checked method type(LangObj::Func); or None
func: Option<ObjKey>,
}
impl MethodInfo {
pub fn with_fun(fun: ObjKey) -> MethodInfo {
MethodInfo {
data: Rc::new(RefCell::new(MethodInfoData {
scope: None,
src: None,
func: Some(fun),
})),
}
}
pub fn with_scope_src(skey: ScopeKey, fkey: FieldKey) -> MethodInfo {
MethodInfo {
data: Rc::new(RefCell::new(MethodInfoData {
scope: Some(skey),
src: Some(fkey),
func: None,
})),
}
}
pub fn scope(&self) -> Option<ScopeKey> {
self.data.borrow().scope
}
pub fn src(&self) -> Option<FieldKey> {
self.data.borrow().src
}
pub fn func(&self) -> Option<ObjKey> {
self.data.borrow().func
}
pub fn set_func(&self, func: ObjKey) {
self.data.borrow_mut().func = Some(func);
}
pub fn fmt(
&self,
f: &mut fmt::Formatter<'_>,
tc_objs: &TCObjects,
ast_objs: &AstObjects,
) -> fmt::Result {
let s = if let Some(okey) = self.func() {
tc_objs.lobjs[okey].name()
} else {
&ast_objs.idents[ast_objs.fields[self.src().unwrap()].names[0]].name
};
f.write_str(s)
}
pub fn pos(&self, tc_objs: &TCObjects, ast_objs: &AstObjects) -> Pos {
if let Some(okey) = self.func() {
tc_objs.lobjs[okey].pos()
} else {
self.src().unwrap().pos(ast_objs)
}
}
pub fn id<'a>(
&self,
pkey: PackageKey,
tc_objs: &'a TCObjects,
ast_objs: &'a AstObjects,
) -> Cow<'a, str> {
if let Some(okey) = self.func() {
tc_objs.lobjs[okey].id(tc_objs)
} else {
let pkg = Some(&tc_objs.pkgs[pkey]);
let name = &ast_objs.idents[ast_objs.fields[self.src().unwrap()].names[0]].name;
obj::get_id(pkg, name)
}
}
}
/// IfaceInfo describes the method set for an interface.
#[derive(Debug)]
pub struct IfaceInfo {
pub explicits: usize,
pub methods: Vec<MethodInfo>,
}
impl IfaceInfo {
pub fn new(explicits: usize, methods: Vec<MethodInfo>) -> IfaceInfo {
IfaceInfo {
explicits: explicits,
methods: methods,
}
}
pub fn new_empty() -> IfaceInfo {
IfaceInfo::new(0, vec![])
}
pub fn is_empty(&self) -> bool {
self.methods.is_empty()
}
pub fn fmt(
&self,
f: &mut fmt::Formatter<'_>,
tc_objs: &TCObjects,
ast_objs: &AstObjects,
) -> fmt::Result {
f.write_str("interface{")?;
for (i, m) in self.methods.iter().enumerate() {
if i > 0 {
f.write_char(' ')?;
}
m.fmt(f, tc_objs, ast_objs)?;
}
f.write_char('}')
}
}
impl<'a, S: SourceRead> Checker<'a, S> {
/// info_from_type_lit computes the method set for the given interface iface
/// declared in scope.
/// If a corresponding type name exists (tname is_some), it is used for
/// cycle detection and to cache the method set.
/// The result is the method set, or None if there is a cycle via embedded
/// interfaces. A is_some result doesn't mean that there were no errors,
/// but they were either reported (e.g., blank methods), or will be found
/// (again) when computing the interface's type.
/// If tname is not None it must be the last element in path.
pub fn info_from_type_lit(
&self,
skey: ScopeKey,
iface: &Rc<ast::InterfaceType>,
tname: Option<ObjKey>,
path: &Vec<ObjKey>,
fctx: &mut FilesContext<S>,
) -> Option<RcIfaceInfo> {
if self.trace() {
let expr = Expr::Interface(iface.clone());
let ed = self.new_dis(&expr);
let pstr = self.obj_path_str(path);
let opstr = self.obj_path_str(&fctx.obj_path);
let msg = format!(
"-- collect methods for {} (path = {}, objPath = {})",
ed, pstr, opstr
);
self.trace_begin(iface.interface, &msg);
}
let end = |ret: Option<RcIfaceInfo>| {
if self.trace() {
let expr = Expr::Interface(iface.clone());
let ed = self.new_dis(&expr);
self.trace_end(iface.interface, &format!("=> {}", ed));
}
ret
};
// If the interface is named, check if we computed info already.
//
// This is not simply an optimization; we may run into stack
// overflow with recursive interface declarations. Example:
//
// type T interface {
// m() interface { T }
// }
//
// (Since recursive definitions can only be expressed via names,
// it is sufficient to track named interfaces here.)
//
// While at it, use the same mechanism to detect cycles. (We still
// have the path-based cycle check because we want to report the
// entire cycle if present.)
if let Some(okey) = tname {
debug_assert!(path[path.len() - 1] == okey);
if let Some(info) = fctx.ifaces.get(&okey) {
let cloned_info = info.clone();
if info.is_none() {
// We have a cycle and use check::has_cycle to report it.
// We are guaranteed that check::has_cycle also finds the
// cycle because when info_from_type_lit is called, any
// tname that's already in FilesContext.ifaces was also
// added to the path. (But the converse is not true:
// A non-None tname is always the last element in path.)
let yes = self.has_cycle(okey, path, true);
assert!(yes);
}
return end(cloned_info);
} else {
// computation started but not complete
fctx.ifaces.insert(okey, None);
}
}
let iinfo = if iface.methods.list.len() == 0 {
Rc::new(IfaceInfo::new_empty())
} else {
let mut mset = Map::new();
let mut methods = vec![];
let mut embeddeds = vec![];
let mut positions = vec![];
for fkey in iface.methods.list.iter() {
let field = &self.ast_objs.fields[*fkey];
if field.names.len() > 0 {
// We have a method with name f.Names[0].
// (The parser ensures that there's only one method
// and we don't care if a constructed AST has more.)
// spec: "As with all method sets, in an interface type,
// each method must have a unique non-blank name."
let name = self.ast_ident(field.names[0]);
if name.name == "_" {
self.error_str(name.pos, "invalid method name _");
continue; // ignore
}
let m = MethodInfo::with_scope_src(skey, *fkey);
if self.declare_in_method_set(&mut mset, m.clone(), fkey.pos(self.ast_objs)) {
methods.push(m);
}
} else {
// We have an embedded interface and f.Type is its
// (possibly qualified) embedded type name. Collect
// it if it's a valid interface.
let e = match &field.typ {
Expr::Ident(i) => self.info_from_type_name(skey, *i, path, fctx),
Expr::Selector(sel) => self.info_from_qualified_type_mame(skey, sel),
_ => {
// The parser makes sure we only see one of the above.
// Constructed ASTs may contain other (invalid) nodes;
// we simply ignore them. The full type-checking pass
// will report those as errors later.
None
}
};
if let Some(emb) = e {
embeddeds.push(emb);
positions.push(fkey.pos(self.ast_objs));
}
}
}
let explicites = methods.len();
// collect methods of embedded interfaces
for (i, e) in embeddeds.into_iter().enumerate() {
let pos = positions[i];
for m in e.methods.iter() {
if self.declare_in_method_set(&mut mset, m.clone(), pos) {
methods.push(m.clone());
}
}
}
Rc::new(IfaceInfo::new(explicites, methods))
};
// mark check.interfaces as complete
if let Some(okey) = tname {
fctx.ifaces.insert(okey, Some(iinfo.clone()));
}
end(Some(iinfo))
}
// info_from_type_name computes the method set for the given type name
// which must denote a type whose underlying type is an interface.
// The same result qualifications apply as for info_from_type_lit.
// info_from_type_name should only be called from info_from_type_lit.
fn info_from_type_name(
&self,
skey: ScopeKey,
name: IdentKey,
path: &Vec<ObjKey>,
fctx: &mut FilesContext<S>,
) -> Option<RcIfaceInfo> {
// A single call of info_from_type_name handles a sequence of (possibly
// recursive) type declarations connected via unqualified type names.
// The general scenario looks like this:
// ...
// type Pn T // previous declarations leading to T, path = [..., Pn]
// type T interface { T0; ... } // T0 leads to call of info_from_type_name
//
// // info_from_type_name(name = T0, path = [..., Pn, T])
// type T0 T1 // path = [..., Pn, T, T0]
// type T1 T2 <-+ // path = [..., Pn, T, T0, T1]
// type T2 ... | // path = [..., Pn, T, T0, T1, T2]
// type Tn T1 --+ // path = [..., Pn, T, T0, T1, T2, Tn] and T1 is in path => cycle
// info_from_type_name returns nil when such a cycle is detected. But in
// contrast to cycles involving interfaces, we must not report the
// error for "type name only" cycles because they will be found again
// during type-checking of embedded interfaces. Reporting those cycles
// here would lead to double reporting. Cycles involving embedding are
// not reported again later because type-checking of interfaces relies
// on the IfaceInfos computed here which are cycle-free by design.
//
// Remember the path length to detect "type name only" cycles.
let start = path.len();
let mut cur_path = path.clone();
let mut ident = self.ast_ident(name);
loop {
let lookup = Scope::lookup_parent(&skey, &ident.name, self.octx.pos, self.tc_objs);
if lookup.is_none() {
break;
}
let tname = lookup.as_ref().unwrap().1;
let tname_val = self.lobj(tname);
if &obj::EntityType::TypeName != tname_val.entity_type() {
break;
}
// We have a type name. It may be predeclared (error type),
// imported (dot import), or declared by a type declaration.
// It may not be an interface (e.g., predeclared type int).
// Resolve it by analyzing each possible case.
// Abort but don't report an error if we have a "type name only"
// cycle (see big function comment).
if self.has_cycle(tname, &cur_path[start..], false) {
break;
}
// Abort and report an error if we have a general cycle.
if self.has_cycle(tname, &cur_path, true) {
break;
}
cur_path.push(tname);
// If tname is a package-level type declaration, it must be
// in the obj_map. Follow the RHS of that declaration if so.
// The RHS may be a literal type (likely case), or another
// (possibly parenthesized and/or qualified) type name.
// (The declaration may be an alias declaration, but it
// doesn't matter for the purpose of determining the under-
// lying interface.)
if let Some(decl_key) = self.obj_map.get(&tname) {
let decl = &self.tc_objs.decls[*decl_key].as_type();
let ty = Checker::<S>::unparen(&decl.typ);
match ty {
Expr::Ident(i) => {
// type tname T
ident = self.ast_ident(*i);
}
Expr::Selector(sel) => {
// type tname p.T
return self.info_from_qualified_type_mame(decl.file_scope, sel);
}
Expr::Interface(iface) => {
// type tname interface{...}
return self.info_from_type_lit(
decl.file_scope,
iface,
Some(tname),
&cur_path,
fctx,
);
}
// type tname X // and X is not an interface type
_ => break,
}
} else {
// If tname is not a package-level declaration, in a well-typed
// program it should be a predeclared (error type), imported (dot
// import), or function local declaration. Either way, it should
// have been fully declared before use, except if there is a direct
// cycle, and direct cycles will be caught above. Also, the denoted
// type should be an interface (e.g., int is not an interface).
if let Some(ty) = tname_val.typ() {
let ty = typ::underlying_type(ty, self.tc_objs);
if let typ::Type::Interface(i) = self.otype(ty) {
return Some(self.info_from_type(i));
}
}
break;
}
}
None
}
/// like Checker::declare_in_set but for method infos.
fn declare_in_method_set(
&self,
set: &mut Map<String, MethodInfo>,
mi: MethodInfo,
pos: Pos,
) -> bool {
let id = mi.id(self.pkg, self.tc_objs, self.ast_objs);
if let Some(alt) = set.insert(id.to_string(), mi) {
let mi_ref = set.get(id.as_ref()).unwrap();
let md = self.new_dis(mi_ref);
self.error(pos, format!("{} redeclared", md));
let mpos = mi_ref.pos(self.tc_objs, self.ast_objs);
if mpos > 0 {
// We use "other" rather than "previous" here because
// the first declaration seen may not be textually
// earlier in the source.
let md = self.new_dis(&alt);
self.error(mpos, format!("\tother declaration of {}", md));
}
false
} else {
true
}
}
/// info_from_qualified_type_mame returns the method set for the given qualified
/// type name, or None.
fn info_from_qualified_type_mame(
&self,
skey: ScopeKey,
sel: &ast::SelectorExpr,
) -> Option<RcIfaceInfo> {
if let Some(name) = sel.expr.try_as_ident() {
let ident = self.ast_ident(*name);
if let Some((_, obj1)) =
Scope::lookup_parent(&skey, &ident.name, self.octx.pos, self.tc_objs)
{
let obj_val = self.lobj(obj1);
if let obj::EntityType::PkgName(imported, _) = obj_val.entity_type() {
debug_assert!(obj_val.pkg() == Some(self.pkg));
let imported_val = &self.tc_objs.pkgs[*imported];
let scope = &self.tc_objs.scopes[*imported_val.scope()];
if let Some(obj2) = scope.lookup(&self.ast_ident(sel.sel).name) {
let obj_val2 = self.lobj(*obj2);
if !obj_val2.exported() {
return None;
}
if let obj::EntityType::TypeName = obj_val2.entity_type() {
let t = typ::underlying_type(obj_val2.typ().unwrap(), self.tc_objs);
if let Some(iface) = self.otype(t).try_as_interface() {
return Some(self.info_from_type(iface));
}
}
}
}
}
}
None
}
/// info_from_type computes the method set for the given interface type.
fn info_from_type(&self, iface: &typ::InterfaceDetail) -> RcIfaceInfo {
let all_methods_ref = iface.all_methods();
let all_methods = all_methods_ref.as_ref().unwrap();
let all_methods_len = all_methods.len();
let mut mis = iface
.methods()
.iter()
.map(|x| MethodInfo::with_fun(*x))
.collect();
if all_methods_len == iface.methods().len() {
return Rc::new(IfaceInfo::new(all_methods_len, mis));
}
// there are embedded method, put them after explicite methods
let set: HashSet<ObjKey> = iface.methods().clone().into_iter().collect();
let mut embedded: Vec<MethodInfo> = all_methods
.iter()
.filter_map(|x| {
if set.contains(x) {
None
} else {
Some(MethodInfo::with_fun(*x))
}
})
.collect();
mis.append(&mut embedded);
Rc::new(IfaceInfo::new(iface.methods().len(), mis))
}
}