1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
// Copyright 2022 The Goscript Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
//
// This code is adapted from the offical Go code written in Go
// with license as follows:
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#![allow(dead_code)]
use crate::SourceRead;
use super::super::constant;
use super::super::obj::{type_name_is_alias, EntityType, ObjColor};
use super::super::objects::{DeclInfoKey, ObjKey, ScopeKey, TypeKey};
use super::super::operand::Operand;
use super::super::scope::Scope;
use super::super::typ::{self};
use super::check::{Checker, FilesContext, ObjContext};
use super::stmt::BodyContainer;
use go_parser::ast::{self, Expr, Node};
use go_parser::{IdentKey, Map, Pos, Token};
impl<'a, S: SourceRead> Checker<'a, S> {
pub fn report_alt_decl(&self, okey: ObjKey) {
let lobj = self.lobj(okey);
let pos = lobj.pos();
if pos > 0 {
self.error(pos, format!("\tother declaration of {}", lobj.name()));
}
}
pub fn declare(&mut self, skey: ScopeKey, ikey: Option<IdentKey>, okey: ObjKey, pos: Pos) {
// spec: "The blank identifier, represented by the underscore
// character _, may be used in a declaration like any other
// identifier but the declaration does not introduce a new
// binding."
if self.lobj(okey).name() != "_" {
let alt = Scope::insert(skey, okey, self.tc_objs).map(|x| x.clone());
if let Some(o) = alt {
let lobj = self.lobj(okey);
self.error(
lobj.pos(),
format!("{} redeclared in this block", lobj.name()),
);
self.report_alt_decl(o);
return;
}
self.lobj_mut(okey).set_scope_pos(pos);
}
if ikey.is_some() {
self.result.record_def(ikey.unwrap(), Some(okey));
}
}
pub fn obj_decl(&mut self, okey: ObjKey, def: Option<TypeKey>, fctx: &mut FilesContext<S>) {
let trace_end_data = if self.trace() {
let lobj = self.lobj(okey);
let pos = lobj.pos();
let obj_display = self.new_dis(&okey);
let bmsg = format!(
"-- checking {} {} (objPath = {})",
lobj.color(),
obj_display,
self.obj_path_str(&fctx.obj_path)
);
let end = format!("=> {}", obj_display);
self.trace_begin(pos, &bmsg);
Some((pos, end))
} else {
None
};
// Checking the declaration of obj means inferring its type
// (and possibly its value, for constants).
// An object's type (and thus the object) may be in one of
// three states which are expressed by colors:
//
// - an object whose type is not yet known is painted white (initial color)
// - an object whose type is in the process of being inferred is painted grey
// - an object whose type is fully inferred is painted black
//
// During type inference, an object's color changes from white to grey
// to black (pre-declared objects are painted black from the start).
// A black object (i.e., its type) can only depend on (refer to) other black
// ones. White and grey objects may depend on white and black objects.
// A dependency on a grey object indicates a cycle which may or may not be
// valid.
//
// When objects turn grey, they are pushed on the object path (a stack);
// they are popped again when they turn black. Thus, if a grey object (a
// cycle) is encountered, it is on the object path, and all the objects
// it depends on are the remaining objects on that path. Color encoding
// is such that the color value of a grey object indicates the index of
// that object in the object path.
// During type-checking, white objects may be assigned a type without
// traversing through objDecl; e.g., when initializing constants and
// variables. Update the colors of those objects here (rather than
// everywhere where we set the type) to satisfy the color invariants.
let lobj = &mut self.tc_objs.lobjs[okey];
if lobj.color() == ObjColor::White && lobj.typ().is_some() {
lobj.set_color(ObjColor::Black);
if let Some((p, m)) = &trace_end_data {
self.trace_end(*p, m);
}
return;
}
match lobj.color() {
ObjColor::White => {
assert!(lobj.typ().is_none());
lobj.set_color(ObjColor::Gray(fctx.push(okey)));
let dkey = self.obj_map[&okey];
let d = &self.tc_objs.decls[dkey];
// create a new octx for the checker
let mut octx = ObjContext::new();
octx.scope = Some(*d.file_scope());
std::mem::swap(&mut self.octx, &mut octx);
let lobj = &self.tc_objs.lobjs[okey];
match lobj.entity_type() {
EntityType::Const(_) => {
self.octx.decl = Some(dkey);
let cd = d.as_const();
let (typ, init) = (cd.typ.clone(), cd.init.clone());
self.const_decl(okey, &typ, &init, fctx);
}
EntityType::Var(_) => {
self.octx.decl = Some(dkey);
let cd = d.as_var();
let (lhs, typ, init) = (cd.lhs.clone(), cd.typ.clone(), cd.init.clone());
self.var_decl(okey, lhs.as_ref(), &typ, &init, fctx);
}
EntityType::TypeName => {
let cd = d.as_type();
let (typ, alias) = (cd.typ.clone(), cd.alias);
self.type_decl(okey, &typ, def, alias, fctx);
}
EntityType::Func(_) => {
self.func_decl(okey, dkey, fctx);
}
_ => unreachable!(),
}
// handled defered actions:
std::mem::swap(&mut self.octx, &mut octx); // restore octx
self.lobj_mut(fctx.pop()).set_color(ObjColor::Black);
}
ObjColor::Black => {
assert!(lobj.typ().is_some());
}
ObjColor::Gray(_) => {
// We have a cycle.
// In the existing code, this is marked by a non-nil type
// for the object except for constants and variables whose
// type may be non-nil (known), or nil if it depends on the
// not-yet known initialization value.
// In the former case, set the type to Typ[Invalid] because
// we have an initialization cycle. The cycle error will be
// reported later, when determining initialization order.
let lobj = &self.tc_objs.lobjs[okey];
let invalid_type = self.invalid_type();
match lobj.entity_type() {
EntityType::Const(_) | EntityType::Var(_) => {
if self.invalid_type_cycle(okey, fctx) || lobj.typ().is_none() {
self.tc_objs.lobjs[okey].set_type(Some(invalid_type));
}
}
EntityType::TypeName => {
if self.invalid_type_cycle(okey, fctx) {
self.tc_objs.lobjs[okey].set_type(Some(invalid_type));
}
}
EntityType::Func(_) => {
if self.invalid_type_cycle(okey, fctx) {
// Don't set obj.typ to Typ[Invalid] here
// because plenty of code type-asserts that
// functions have a Signature type. Grey
// functions have their type set to an empty
// signature which makes it impossible to
// initialize a variable with the function.
}
}
_ => unreachable!(),
}
let lobj = self.lobj(okey); // make the borrow checker happy
assert!(lobj.typ().is_some());
}
}
if let Some((p, m)) = &trace_end_data {
self.trace_end(*p, m);
}
}
/// invalid_type_cycle returns true if the cycle starting with obj is invalid and
/// reports an error.
pub fn invalid_type_cycle(&self, okey: ObjKey, fctx: &mut FilesContext<S>) -> bool {
// Given the number of constants and variables (nval) in the cycle
// and the cycle length (ncycle = number of named objects in the cycle),
// we distinguish between cycles involving only constants and variables
// (nval = ncycle), cycles involving types (and functions) only
// (nval == 0), and mixed cycles (nval != 0 && nval != ncycle).
// We ignore functions at the moment (taking them into account correctly
// is complicated and it doesn't improve error reporting significantly).
//
// A cycle must have at least one indirection and one type definition
// to be permitted: If there is no indirection, the size of the type
// cannot be computed (it's either infinite or 0); if there is no type
// definition, we have a sequence of alias type names which will expand
// ad infinitum.
let lobj = self.lobj(okey);
let mut has_indir = false;
let mut has_type_def = false;
let mut nval = 0;
let start = match lobj.color() {
ObjColor::Gray(v) => v,
_ => unreachable!(),
};
let cycle = &fctx.obj_path[start..];
let mut ncycle = cycle.len(); // including indirections
for o in cycle {
let oval = self.lobj(*o);
match oval.entity_type() {
EntityType::Const(_) | EntityType::Var(_) => {
nval += 1;
}
EntityType::TypeName => {
if o == self.tc_objs.universe().indir() {
ncycle -= 1; // don't count (indirections are not objects)
has_indir = true;
} else {
// Determine if the type name is an alias or not. For
// package-level objects, use the object map which
// provides syntactic information (which doesn't rely
// on the order in which the objects are set up). For
// local objects, we can rely on the order, so use
// the object's predicate.
let alias = if let Some(d) = self.obj_map.get(o) {
// package-level object
self.decl_info(*d).as_type().alias
} else {
// function local object
type_name_is_alias(*o, self.tc_objs)
};
if !alias {
has_type_def = true;
}
}
}
EntityType::Func(_) => {} // ignored for now
_ => unreachable!(),
}
}
// A cycle involving only constants and variables is invalid but we
// ignore them here because they are reported via the initialization
// cycle check.
if nval == ncycle {
return false;
}
// A cycle involving only types (and possibly functions) must have at
// least one indirection and one type definition to be permitted: If
// there is no indirection, the size of the type cannot be computed
// (it's either infinite or 0); if there is no type definition, we
// have a sequence of alias type names which will expand ad infinitum.
if nval == 0 && has_indir && has_type_def {
return false; // cycle is permitted
}
// report error
let pos = lobj.pos();
self.error(
pos,
format!("illegal cycle in declaration of {}", lobj.name()),
);
for o in cycle {
if o == self.tc_objs.universe().indir() {
continue;
}
self.error(pos, format!("\t{} refers to", self.lobj(*o).name()));
}
self.error(pos, format!("\t{} refers to", lobj.name()));
true
}
pub fn const_decl(
&mut self,
okey: ObjKey,
typ: &Option<Expr>,
init: &Option<Expr>,
fctx: &mut FilesContext<S>,
) {
let lobj = self.lobj(okey);
assert!(lobj.typ().is_none());
self.octx.iota = Some(lobj.const_val().clone());
// provide valid constant value under all circumstances
self.lobj_mut(okey).set_const_val(constant::Value::Unknown);
// determine type, if any
if let Some(e) = typ {
let t = self.type_expr(e, fctx);
let tval = &self.tc_objs.types[t];
if !tval.is_const_type(self.tc_objs) {
let invalid_type = self.invalid_type();
if tval.underlying().unwrap_or(t) != invalid_type {
self.error(
e.pos(self.ast_objs),
format!("invalid constant type {}", self.new_dis(&t)),
);
}
self.lobj_mut(okey).set_type(Some(invalid_type));
// clear iota
self.octx.iota = None;
return;
}
self.lobj_mut(okey).set_type(Some(t));
}
let mut x = Operand::new();
if let Some(expr) = init {
self.expr(&mut x, expr, fctx);
}
self.init_const(okey, &mut x, fctx);
// clear iota
self.octx.iota = None;
}
pub fn var_decl(
&mut self,
okey: ObjKey,
lhs: Option<&Vec<ObjKey>>,
typ: &Option<Expr>,
init: &Option<Expr>,
fctx: &mut FilesContext<S>,
) {
debug_assert!(self.lobj(okey).typ().is_none());
// determine type, if any
if let Some(texpr) = typ {
let t = self.type_expr(texpr, fctx);
self.lobj_mut(okey).set_type(Some(t));
// We cannot spread the type to all lhs variables if there
// are more than one since that would mark them as checked
// (see Checker::obj_decl) and the assignment of init exprs,
// if any, would not be checked.
}
// check initialization
if init.is_none() {
if typ.is_none() {
// error reported before by arityMatch
let invalid = self.invalid_type();
self.lobj_mut(okey).set_type(Some(invalid));
}
return;
}
if lhs.is_none() || lhs.as_ref().unwrap().len() == 1 {
assert!(lhs.is_none() || lhs.as_ref().unwrap()[0] == okey);
let mut x = Operand::new();
self.expr(&mut x, init.as_ref().unwrap(), fctx);
self.init_var(okey, &mut x, "variable declaration", fctx);
return;
}
debug_assert!(lhs.as_ref().unwrap().iter().find(|&&x| x == okey).is_some());
// We have multiple variables on the lhs and one init expr.
// Make sure all variables have been given the same type if
// one was specified, otherwise they assume the type of the
// init expression values
if typ.is_some() {
let t = self.lobj(okey).typ();
for o in lhs.as_ref().unwrap().iter() {
self.lobj_mut(*o).set_type(t);
}
}
self.init_vars(
lhs.as_ref().unwrap(),
&vec![init.clone().unwrap()],
None,
fctx,
);
}
pub fn type_decl(
&mut self,
okey: ObjKey,
typ: &Expr,
def: Option<TypeKey>,
alias: bool,
fctx: &mut FilesContext<S>,
) {
debug_assert!(self.lobj(okey).typ().is_none());
if alias {
let invalid = self.invalid_type();
self.lobj_mut(okey).set_type(Some(invalid));
let t = self.type_expr(typ, fctx);
self.lobj_mut(okey).set_type(Some(t));
} else {
let named_key = self.tc_objs.new_t_named(Some(okey), None, vec![]);
if let Some(d) = def {
self.tc_objs.types[d]
.try_as_named_mut()
.unwrap()
.set_underlying(named_key);
}
// make sure recursive type declarations terminate
self.lobj_mut(okey).set_type(Some(named_key));
// determine underlying type of named
self.defined_type(typ, Some(named_key), fctx);
// The underlying type of named may be itself a named type that is
// incomplete:
//
// type (
// A B
// B *C
// C A
// )
//
// The type of C is the (named) type of A which is incomplete,
// and which has as its underlying type the named type B.
// Determine the (final, unnamed) underlying type by resolving
// any forward chain (they always end in an unnamed type).
let underlying = typ::deep_underlying_type(named_key, self.tc_objs);
self.tc_objs.types[named_key]
.try_as_named_mut()
.unwrap()
.set_underlying(underlying);
}
self.add_method_decls(okey, fctx);
}
pub fn func_decl(&mut self, okey: ObjKey, dkey: DeclInfoKey, fctx: &mut FilesContext<S>) {
debug_assert!(self.lobj(okey).typ().is_none());
// func declarations cannot use iota
debug_assert!(self.octx.iota.is_none());
let guard_sig = Some(*self.tc_objs.universe().guard_sig());
self.lobj_mut(okey).set_type(guard_sig);
let d = &self.tc_objs.decls[dkey].as_func();
let fdecl_key = d.fdecl;
let fdecl = &self.ast_objs.fdecls[fdecl_key];
let (recv, typ) = (fdecl.recv.clone(), fdecl.typ);
let sig_key = self.func_type(recv.as_ref(), typ, fctx);
self.lobj_mut(okey).set_type(Some(sig_key));
// check for 'init' func
let fdecl = &self.ast_objs.fdecls[fdecl_key];
let sig = &self.tc_objs.types[sig_key].try_as_signature().unwrap();
let lobj = &self.tc_objs.lobjs[okey];
if sig.recv().is_none()
&& lobj.name() == "init"
&& (sig.params_count(self.tc_objs) > 0 || sig.results_count(self.tc_objs) > 0)
{
self.error(
fdecl.pos(self.ast_objs),
"func init must have no arguments and no return values".to_owned(),
);
// ok to continue
}
if let Some(_) = &fdecl.body {
let name = lobj.name().clone();
let body = BodyContainer::FuncDecl(fdecl_key);
let f = move |checker: &mut Checker<S>, fctx: &mut FilesContext<S>| {
checker.func_body(Some(dkey), &name, sig_key, body, None, fctx);
};
fctx.later(Box::new(f));
}
}
pub fn add_method_decls(&mut self, okey: ObjKey, fctx: &mut FilesContext<S>) {
// get associated methods
// (Checker.collect_objects only collects methods with non-blank names;
// Checker.resolve_base_type_name ensures that obj is not an alias name
// if it has attached methods.)
if !fctx.methods.contains_key(&okey) {
return;
}
let methods = fctx.methods.remove(&okey).unwrap();
// don't use TypeName.is_alias (requires fully set up object)
debug_assert!(!self.decl_info(self.obj_map[&okey]).as_type().alias);
let mut mset: Map<String, ObjKey> = Map::new();
let type_key = self.lobj(okey).typ().unwrap();
// type could be invalid
if let Some(named) = self.otype(type_key).try_as_named() {
if let Some(struc) = self.otype(named.underlying()).try_as_struct() {
for f in struc.fields().iter() {
if self.lobj(*f).name() != "_" {
assert!(self.insert_obj_to_set(&mut mset, *f).is_none());
}
}
}
// if we allow Check.check be called multiple times; additional package files
// may add methods to already type-checked types. Add pre-existing methods
// so that we can detect redeclarations.
for m in named.methods().iter() {
let lobj = self.lobj(*m);
assert!(lobj.name() != "_");
assert!(self.insert_obj_to_set(&mut mset, *m).is_none());
}
}
// get valid methods
let mut valids: Vec<ObjKey> = methods
.into_iter()
.filter(|m| {
// spec: "For a base type, the non-blank names of methods bound
// to it must be unique."
let mobj = self.lobj(*m);
assert!(mobj.name() != "_");
let alt = self.insert_obj_to_set(&mut mset, *m);
if let Some(alt) = alt {
let alt_obj = self.lobj(alt);
match alt_obj.entity_type() {
EntityType::Var(_) => self.error(
mobj.pos(),
format!("field and method with the same name {}", mobj.name()),
),
EntityType::Func(_) => {
self.error(
mobj.pos(),
format!(
"method {} already declared for {}",
mobj.name(),
self.new_dis(m)
),
);
}
_ => unreachable!(),
}
self.report_alt_decl(alt);
false
} else {
true
}
})
.collect();
// append valid methods
self.tc_objs.types[type_key]
.try_as_named_mut()
.and_then::<(), _>(|x| {
x.methods_mut().append(&mut valids);
None
});
}
pub fn decl_stmt(&mut self, decl: ast::Decl, fctx: &mut FilesContext<S>) {
match decl {
ast::Decl::Bad(_) => { /*ignore*/ }
ast::Decl::Func(_) => {
self.invalid_ast(decl.pos(self.ast_objs), "unknown ast.FuncDecl node")
}
ast::Decl::Gen(gdecl) => {
let mut last_full_const_spec: Option<ast::Spec> = None;
let specs = &(*gdecl).specs;
for (iota, spec_key) in specs.iter().enumerate() {
let spec = &self.ast_objs.specs[*spec_key].clone();
let spec_pos = spec.pos(self.ast_objs);
let spec_end = spec.end(self.ast_objs);
match spec {
ast::Spec::Value(vs) => {
let vspec = &**vs;
let top = fctx.delayed_count();
let mut current_vspec = None;
let lhs: Vec<ObjKey> = match gdecl.token {
Token::CONST => {
if vspec.typ.is_some() || vspec.values.len() > 0 {
last_full_const_spec = Some(spec.clone());
current_vspec = Some(vspec);
} else {
// no ValueSpec with type or init exprs,
// try get the last one
if let Some(spec) = &last_full_const_spec {
match spec {
ast::Spec::Value(v) => {
current_vspec = Some(&*v);
}
_ => unreachable!(),
}
}
}
// all lhs
vspec
.names
.clone()
.into_iter()
.enumerate()
.map(|(i, name)| {
let ident = &self.ast_objs.idents[name];
let okey = self.tc_objs.new_const(
ident.pos,
Some(self.pkg),
ident.name.clone(),
None,
constant::Value::with_i64(iota as i64),
);
let init = if current_vspec.is_some()
&& i < current_vspec.unwrap().values.len()
{
Some(current_vspec.unwrap().values[i].clone())
} else {
None
};
let typ =
current_vspec.map(|x| x.typ.clone()).flatten();
self.const_decl(okey, &typ, &init, fctx);
okey
})
.collect()
}
Token::VAR => {
let vars: Vec<ObjKey> = vspec
.names
.iter()
.map(|x| {
let ident = &self.ast_objs.idents[*x];
self.tc_objs.new_var(
ident.pos,
Some(self.pkg),
ident.name.clone(),
None,
)
})
.collect();
let n_to_1 = vspec.values.len() == 1 && vspec.names.len() > 1;
if n_to_1 {
self.var_decl(
vars[0],
Some(&vars),
&vspec.typ.clone(),
&Some(vspec.values[0].clone()),
fctx,
);
} else {
for (i, okey) in vars.iter().enumerate() {
self.var_decl(
*okey,
None,
&vspec.typ.clone(),
&vspec.values.get(i).map(|x| x.clone()),
fctx,
);
}
}
vars
}
_ => {
self.invalid_ast(
spec_pos,
&format!("invalid token {}", gdecl.token),
);
vec![]
}
};
self.arity_match(vspec, gdecl.token == Token::CONST, current_vspec);
// process function literals in init expressions before scope changes
fctx.process_delayed(top, self);
// spec: "The scope of a constant or variable identifier declared
// inside a function begins at the end of the ConstSpec or VarSpec
// (ShortVarDecl for short variable declarations) and ends at the
// end of the innermost containing block."
for (i, name) in vspec.names.iter().enumerate() {
self.declare(
self.octx.scope.unwrap(),
Some(*name),
lhs[i],
spec_end,
);
}
}
ast::Spec::Type(ts) => {
let ident = self.ast_ident(ts.name);
let (pos, name) = (ident.pos, ident.name.clone());
let okey = self.tc_objs.new_type_name(pos, Some(self.pkg), name, None);
// spec: "The scope of a type identifier declared inside a function
// begins at the identifier in the TypeSpec and ends at the end of
// the innermost containing block."
self.declare(self.octx.scope.unwrap(), Some(ts.name), okey, pos);
// mark and unmark type before calling Checker.type_decl;
// its type is still nil (see Checker.obj_decl)
self.lobj_mut(okey)
.set_color(ObjColor::Gray(fctx.push(okey)));
self.type_decl(okey, &ts.typ.clone(), None, ts.assign > 0, fctx);
self.lobj_mut(fctx.pop()).set_color(ObjColor::Black);
}
_ => self.invalid_ast(spec_pos, "const, type, or var declaration expected"),
}
}
}
}
}
}