1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
// Copyright 2022 The Goscript Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//
//
// This code is adapted from the offical Go code written in Go
// with license as follows:
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#![allow(dead_code)]
use crate::SourceRead;

use super::super::constant::Value;
use super::super::lookup::{self, LookupResult};
use super::super::objects::{ObjKey, TCObjects, TypeKey};
use super::super::operand::{Operand, OperandMode};
use super::super::selection::{Selection, SelectionKind};
use super::super::typ::{self, untyped_default_type, BasicInfo, BasicType, Type};
use super::super::universe::Builtin;
use super::check::{Checker, FilesContext};
use super::util::{UnpackResult, UnpackedResultLeftovers};
use go_parser::ast::{CallExpr, Expr, Node};
use go_parser::Token;
use std::cmp::Ordering;
use std::collections::HashSet;
use std::rc::Rc;

impl<'a, S: SourceRead> Checker<'a, S> {
    /// builtin type-checks a call to the built-in specified by id and
    /// reports whether the call is valid, with *x holding the result;
    /// but x.expr is not set. If the call is invalid, the result is
    /// false, and *x is undefined.
    pub fn builtin(
        &mut self,
        x: &mut Operand,
        call: &Rc<CallExpr>,
        id: Builtin,
        fctx: &mut FilesContext<S>,
    ) -> bool {
        // append is the only built-in that permits the use of ... for the last argument
        let binfo = self.tc_objs.universe().builtins()[&id];
        if call.ellipsis.is_some() && id != Builtin::Append {
            self.invalid_op(
                call.ellipsis.unwrap(),
                &format!("invalid use of ... with built-in {}", binfo.name),
            );
            self.use_exprs(&call.args, fctx);
            return false;
        }

        // For len(x) and cap(x) we need to know if x contains any function calls or
        // receive operations. Save/restore current setting and set has_call_or_recv to
        // false for the evaluation of x so that we can check it afterwards.
        // Note: We must do this _before_ calling unpack because unpack evaluates the
        //       first argument before we even call arg(x, 0)!
        let hcor_backup = if id == Builtin::Len || id == Builtin::Cap {
            Some(self.octx.has_call_or_recv)
        } else {
            None
        };
        self.octx.has_call_or_recv = false;

        let report_mismatch = |checker: &Checker<S>, ord, rcount| {
            let msg = match ord {
                std::cmp::Ordering::Less => "not enough",
                std::cmp::Ordering::Greater => "too many",
                std::cmp::Ordering::Equal => return,
            };

            let expr = Expr::Call(call.clone());
            let ed = checker.new_dis(&expr);
            checker.invalid_op(
                call.r_paren,
                &format!(
                    "{} arguments for {} (expected {}, found {})",
                    msg, &ed, binfo.arg_count, rcount
                ),
            );
        };

        // determine actual arguments
        let mut nargs = call.args.len();
        let unpack_result = match id {
            // arguments require special handling
            Builtin::Make | Builtin::New | Builtin::Offsetof | Builtin::Trace | Builtin::Ffi => {
                let ord = nargs.cmp(&binfo.arg_count);
                let ord = if binfo.variadic && ord == Ordering::Greater {
                    Ordering::Equal
                } else {
                    ord
                };
                if ord != std::cmp::Ordering::Equal {
                    report_mismatch(self, ord, nargs);
                    return false;
                }
                None
            }
            _ => {
                let result = self.unpack(&call.args, binfo.arg_count, false, binfo.variadic, fctx);
                if result.is_err() {
                    return false;
                }
                let (count, ord) = result.rhs_count();
                nargs = count;
                if ord != std::cmp::Ordering::Equal {
                    report_mismatch(self, ord, count);
                    return false;
                }
                match result {
                    UnpackResult::Tuple(_, _, _)
                    | UnpackResult::Mutliple(_, _)
                    | UnpackResult::Single(_, _) => {
                        result.get(self, x, 0, fctx);
                        if x.invalid() {
                            return false;
                        }
                    }
                    UnpackResult::Nothing(_) => {} // do nothing
                    UnpackResult::CommaOk(_, _) => unreachable!(),
                    UnpackResult::Error => unreachable!(),
                }
                Some(result)
            }
        };

        let invalid_type = self.invalid_type();
        let om_builtin = &OperandMode::Builtin(id);
        let record =
            |c: &mut Checker<S>, res: Option<TypeKey>, args: &[TypeKey], variadic: bool| {
                let sig = make_sig(c.tc_objs, res, args, variadic);
                c.result.record_builtin_type(om_builtin, &call.func, sig);
            };
        let record_with_sig = |c: &mut Checker<S>, sig: TypeKey| {
            c.result.record_builtin_type(om_builtin, &call.func, sig);
        };
        match id {
            Builtin::Append => {
                // append(s S, x ...T) S, where T is the element type of S
                // spec: "The variadic function append appends zero or more values x to s of type
                // S, which must be a slice type, and returns the resulting slice, also of type S.
                // The values x are passed to a parameter of type ...T where T is the element type
                // of S and the respective parameter passing rules apply."
                let slice = x.typ.unwrap();
                let telem = if let Some(detail) = self
                    .otype(typ::underlying_type(slice, self.tc_objs))
                    .try_as_slice()
                {
                    detail.elem()
                } else {
                    let xd = self.new_dis(x);
                    self.invalid_arg(xd.pos(), &format!("{} is not a slice", xd));
                    return false;
                };

                // the first arg is already evaluated
                let mut alist = vec![x.clone()];

                // spec: "As a special case, append also accepts a first argument assignable
                // to type []byte with a second argument of string type followed by ... .
                // This form appends the bytes of the string.
                if nargs == 2
                    && call.ellipsis.is_some()
                    && x.assignable_to(*self.tc_objs.universe().slice_of_bytes(), None, self, fctx)
                {
                    unpack_result.as_ref().unwrap().get(self, x, 1, fctx);
                    if x.invalid() {
                        return false;
                    }
                    let stype = x.typ.unwrap();
                    if typ::is_string(stype, self.tc_objs) {
                        record(self, Some(slice), &vec![slice, stype], true);

                        x.mode = OperandMode::Value;
                        x.typ = Some(slice);
                        return true;
                    }
                    alist.push(x.clone());
                }

                // check general case by creating custom signature
                let tslice = self.tc_objs.new_t_slice(telem);
                let sig = make_sig(self.tc_objs, Some(slice), &vec![slice, tslice], true);
                let re = UnpackedResultLeftovers {
                    leftovers: unpack_result.as_ref().unwrap(),
                    consumed: Some(&alist),
                };
                self.arguments(x, call, sig, &re, nargs, fctx);
                // ok to continue even if check.arguments reported errors

                x.mode = OperandMode::Value;
                x.typ = Some(slice);
                record_with_sig(self, sig);
            }
            Builtin::Cap | Builtin::Len => {
                // cap(x)
                // len(x)
                let ty = typ::underlying_type(x.typ.unwrap(), self.tc_objs);
                let ty = implicit_array_deref(ty, self.tc_objs);
                let mode = match self.otype(ty) {
                    Type::Basic(detail) => {
                        if detail.info() == BasicInfo::IsString {
                            if let OperandMode::Constant(v) = &x.mode {
                                OperandMode::Constant(Value::with_u64(
                                    v.str_as_string().len() as u64
                                ))
                            } else {
                                OperandMode::Value
                            }
                        } else {
                            OperandMode::Invalid
                        }
                    }
                    Type::Array(detail) => {
                        if self.octx.has_call_or_recv {
                            OperandMode::Value
                        } else {
                            // spec: "The expressions len(s) and cap(s) are constants
                            // if the type of s is an array or pointer to an array and
                            // the expression s does not contain channel receives or
                            // function calls; in this case s is not evaluated."
                            OperandMode::Constant(if let Some(len) = detail.len() {
                                Value::with_u64(len)
                            } else {
                                Value::Unknown
                            })
                        }
                    }
                    Type::Slice(_) | Type::Chan(_) => OperandMode::Value,
                    Type::Map(_) => {
                        if id == Builtin::Len {
                            OperandMode::Value
                        } else {
                            OperandMode::Invalid
                        }
                    }
                    _ => OperandMode::Invalid,
                };

                self.octx.has_call_or_recv = hcor_backup.unwrap();

                if mode == OperandMode::Invalid && ty != invalid_type {
                    let dis = self.new_dis(x);
                    self.invalid_arg(dis.pos(), &format!("{} for {}", dis, binfo.name));
                    return false;
                }

                x.mode = mode;
                x.typ = Some(self.basic_type(BasicType::Int));
                match &x.mode {
                    OperandMode::Constant(_) => {}
                    _ => record(self, x.typ, &vec![ty], false),
                }
            }
            Builtin::Close => {
                // close(c)
                let tkey = typ::underlying_type(x.typ.unwrap(), self.tc_objs);
                if let Some(detail) = self.otype(tkey).try_as_chan() {
                    if detail.dir() == typ::ChanDir::RecvOnly {
                        let dis = self.new_dis(x);
                        self.invalid_arg(
                            dis.pos(),
                            &format!("{} must not be a receive-only channel", dis),
                        );
                        return false;
                    }
                    x.mode = OperandMode::NoValue;

                    record(self, None, &vec![tkey], false);
                } else {
                    let dis = self.new_dis(x);
                    self.invalid_arg(dis.pos(), &format!("{} is not a channel", dis));
                    return false;
                }
            }
            Builtin::Complex => {
                // complex(x, y floatT) complexT
                let mut y = Operand::new();
                unpack_result.as_ref().unwrap().get(self, &mut y, 1, fctx);
                if y.invalid() {
                    return false;
                }

                // convert or check untyped arguments
                let x_untyped = typ::is_untyped(x.typ.unwrap(), self.tc_objs);
                let y_untyped = typ::is_untyped(y.typ.unwrap(), self.tc_objs);
                match (x_untyped, y_untyped) {
                    (false, false) => {} // x and y are typed => nothing to do
                    // only x is untyped => convert to type of y
                    (true, false) => self.convert_untyped(x, y.typ.unwrap(), fctx),
                    // only y is untyped => convert to type of x
                    (false, true) => self.convert_untyped(&mut y, x.typ.unwrap(), fctx),
                    (true, true) => {
                        // x and y are untyped =>
                        // 1) if both are constants, convert them to untyped
                        //    floating-point numbers if possible,
                        // 2) if one of them is not constant (possible because
                        //    it contains a shift that is yet untyped), convert
                        //    both of them to float64 since they must have the
                        //    same type to succeed (this will result in an error
                        //    because shifts of floats are not permitted)
                        match (&x.mode, &y.mode) {
                            (OperandMode::Constant(vx), OperandMode::Constant(vy)) => {
                                let to_float =
                                    |xtype: &mut Option<TypeKey>, v: &Value, objs: &TCObjects| {
                                        if typ::is_numeric(xtype.unwrap(), objs)
                                            && v.imag().sign() == 0
                                        {
                                            *xtype = Some(self.basic_type(BasicType::UntypedFloat));
                                        }
                                    };
                                to_float(&mut x.typ, vx, self.tc_objs);
                                to_float(&mut y.typ, vy, self.tc_objs);
                            }
                            _ => {
                                let tf64 = self.basic_type(BasicType::Float64);
                                self.convert_untyped(x, tf64, fctx);
                                self.convert_untyped(&mut y, tf64, fctx);
                                // x and y should be invalid now, but be conservative
                                // and check below
                            }
                        }
                    }
                }
                if x.invalid() || y.invalid() {
                    return false;
                }

                // both argument types must be identical
                if !typ::identical_o(x.typ, y.typ, self.tc_objs) {
                    self.invalid_arg(
                        x.pos(self.ast_objs),
                        &format!(
                            "mismatched types {} and {}",
                            self.new_dis(x.typ.as_ref().unwrap()),
                            self.new_dis(y.typ.as_ref().unwrap())
                        ),
                    );
                    return false;
                }

                // the argument types must be of floating-point type
                if !typ::is_float(x.typ.unwrap(), self.tc_objs) {
                    self.invalid_arg(
                        x.pos(self.ast_objs),
                        &format!(
                            "arguments have type {}, expected floating-point",
                            self.new_dis(x.typ.as_ref().unwrap())
                        ),
                    );
                    return false;
                }

                // if both arguments are constants, the result is a constant
                match (&mut x.mode, &y.mode) {
                    (OperandMode::Constant(vx), OperandMode::Constant(vy)) => {
                        *vx = Value::binary_op(vx, &Token::ADD, &vy.to_float().make_imag());
                    }
                    _ => {
                        x.mode = OperandMode::Value;
                    }
                }

                // determine result type
                let res = match self
                    .otype(x.typ.unwrap())
                    .underlying_val(self.tc_objs)
                    .try_as_basic()
                    .unwrap()
                    .typ()
                {
                    BasicType::Float32 => BasicType::Complex64,
                    BasicType::Float64 => BasicType::Complex128,
                    BasicType::UntypedFloat => BasicType::UntypedComplex,
                    _ => unreachable!(),
                };
                let res_type = self.basic_type(res);

                match &x.mode {
                    OperandMode::Constant(_) => {}
                    _ => record(
                        self,
                        Some(res_type),
                        &vec![x.typ.unwrap(), x.typ.unwrap()],
                        false,
                    ),
                }

                x.typ = Some(res_type);
            }
            Builtin::Copy => {
                // copy(x, y []T) int
                let dst = self
                    .otype(x.typ.unwrap())
                    .underlying_val(self.tc_objs)
                    .try_as_slice()
                    .map(|x| x.elem());

                let mut y = Operand::new();
                unpack_result.as_ref().unwrap().get(self, &mut y, 1, fctx);
                if y.invalid() {
                    return false;
                }
                let ytype = self.otype(y.typ.unwrap());
                let src = match ytype.underlying_val(self.tc_objs) {
                    Type::Basic(detail) => {
                        if detail.info() == BasicInfo::IsString {
                            Some(*self.tc_objs.universe().byte())
                        } else {
                            None
                        }
                    }
                    Type::Slice(detail) => Some(detail.elem()),
                    _ => None,
                };

                if dst.is_none() || src.is_none() {
                    let (xd, yd) = (self.new_dis(x), self.new_dis(&y));
                    self.invalid_arg(
                        xd.pos(),
                        &format!("copy expects slice arguments; found {} and {}", xd, yd),
                    );
                    return false;
                }

                if !typ::identical_o(dst, src, self.tc_objs) {
                    let (xd, yd) = (self.new_dis(x), self.new_dis(&y));
                    let (txd, tyd) = (self.new_td_o(&dst), self.new_td_o(&src));
                    self.invalid_arg(
                        xd.pos(),
                        &format!(
                            "arguments to copy {} and {} have different element types {} and {}",
                            xd, yd, txd, tyd
                        ),
                    );
                    return false;
                }

                record(
                    self,
                    Some(self.basic_type(BasicType::Int)),
                    &vec![x.typ.unwrap(), y.typ.unwrap()],
                    false,
                );

                x.mode = OperandMode::Value;
                x.typ = Some(self.basic_type(BasicType::Int));
            }
            Builtin::Delete => {
                // delete(m, k)
                let mtype = x.typ.unwrap();
                match self.otype(mtype).underlying_val(self.tc_objs).try_as_map() {
                    Some(detail) => {
                        let key = detail.key();
                        unpack_result.as_ref().unwrap().get(self, x, 1, fctx);
                        if x.invalid() {
                            return false;
                        }
                        if !x.assignable_to(key, None, self, fctx) {
                            let xd = self.new_dis(x);
                            let td = self.new_dis(&key);
                            self.invalid_arg(
                                xd.pos(),
                                &format!("{} is not assignable to {}", xd, td),
                            );
                            return false;
                        }
                        x.mode = OperandMode::NoValue;
                        record(self, None, &vec![mtype, key], false);
                    }
                    None => {
                        let xd = self.new_dis(x);
                        self.invalid_arg(xd.pos(), &format!("{} is not a map", xd));
                        return false;
                    }
                }
            }
            Builtin::Imag | Builtin::Real => {
                // imag(complexT) floatT
                // real(complexT) floatT

                // convert or check untyped argument
                if typ::is_untyped(x.typ.unwrap(), self.tc_objs) {
                    if let OperandMode::Constant(_) = &x.mode {
                        // an untyped constant number can alway be considered
                        // as a complex constant
                        if typ::is_numeric(x.typ.unwrap(), self.tc_objs) {
                            x.typ = Some(self.basic_type(BasicType::UntypedComplex));
                        }
                    } else {
                        // an untyped non-constant argument may appear if
                        // it contains a (yet untyped non-constant) shift
                        // expression: convert it to complex128 which will
                        // result in an error (shift of complex value)
                        self.convert_untyped(x, self.basic_type(BasicType::Complex128), fctx);
                        // x should be invalid now, but be conservative and check
                        if x.invalid() {
                            return false;
                        }
                    }
                }

                // the argument must be of complex type
                if !typ::is_complex(x.typ.unwrap(), self.tc_objs) {
                    let xd = self.new_dis(x);
                    self.invalid_arg(
                        xd.pos(),
                        &format!("argument has type {}, expected complex type", xd),
                    );
                    return false;
                }

                // if the argument is a constant, the result is a constant
                if let OperandMode::Constant(v) = &mut x.mode {
                    *v = match id {
                        Builtin::Real => v.real(),
                        Builtin::Imag => v.imag(),
                        _ => unreachable!(),
                    };
                } else {
                    x.mode = OperandMode::Value;
                }

                // determine result type
                let res = match self
                    .otype(x.typ.unwrap())
                    .underlying_val(self.tc_objs)
                    .try_as_basic()
                    .unwrap()
                    .typ()
                {
                    BasicType::Complex64 => BasicType::Float32,
                    BasicType::Complex128 => BasicType::Float64,
                    BasicType::UntypedComplex => BasicType::UntypedFloat,
                    _ => unreachable!(),
                };
                let res_type = self.basic_type(res);

                match &x.mode {
                    OperandMode::Constant(_) => {}
                    _ => record(self, Some(res_type), &vec![x.typ.unwrap()], false),
                }

                x.typ = Some(res_type);
            }
            Builtin::Make => {
                // make(T, n)
                // make(T, n, m)
                // (no argument evaluated yet)
                let arg0 = &call.args[0];
                let arg0t = self.type_expr(arg0, fctx);
                if arg0t == invalid_type {
                    return false;
                }

                let min = match self.otype(arg0t).underlying_val(self.tc_objs) {
                    Type::Slice(_) => 2,
                    Type::Map(_) | Type::Chan(_) => 1,
                    _ => {
                        let ed = self.new_dis(arg0);
                        self.invalid_arg(
                            ed.pos(),
                            &format!("cannot make {}; type must be slice, map, or channel", ed),
                        );
                        return false;
                    }
                };
                if nargs < min || min + 1 < nargs {
                    let expr = Expr::Call(call.clone());
                    let ed = self.new_dis(&expr);
                    self.error(
                        ed.pos(),
                        format!(
                            "{} expects {} or {} arguments; found {}",
                            ed,
                            min,
                            min + 1,
                            nargs
                        ),
                    );
                    return false;
                }

                // constant integer arguments, if any
                let sizes: Vec<u64> = call.args[1..]
                    .iter()
                    .filter_map(|x| {
                        if let Ok(i) = self.index(x, None, fctx) {
                            return i;
                        }
                        None
                    })
                    .collect();
                if sizes.len() == 2 && sizes[0] > sizes[1] {
                    let pos = call.args[1].pos(self.ast_objs);
                    self.invalid_arg(pos, "length and capacity swapped");
                    // safe to continue
                }
                x.mode = OperandMode::Value;
                x.typ = Some(arg0t);

                let int_type = self.basic_type(BasicType::Int);
                record(
                    self,
                    x.typ,
                    &[arg0t, int_type, int_type][..1 + sizes.len()],
                    false,
                );
            }
            Builtin::New => {
                // new(T)
                // (no argument evaluated yet)
                let arg0 = &call.args[0];
                let argt = self.type_expr(arg0, fctx);
                if argt == invalid_type {
                    return false;
                }

                x.mode = OperandMode::Value;
                x.typ = Some(self.tc_objs.new_t_pointer(argt));
                record(self, x.typ, &vec![argt], false);
            }
            Builtin::Panic => {
                // panic(x)
                // record panic call if inside a function with result parameters
                // (for use in Checker.isTerminating)
                if let Some(sig) = self.octx.sig {
                    if self
                        .otype(sig)
                        .try_as_signature()
                        .unwrap()
                        .results_count(self.tc_objs)
                        > 0
                    {
                        if self.octx.panics.is_none() {
                            self.octx.panics = Some(HashSet::new());
                        }
                        self.octx.panics.as_mut().unwrap().insert(call.id());
                    }
                }

                let iempty = self.tc_objs.new_t_empty_interface();
                self.assignment(x, Some(iempty), "argument to panic", fctx);
                if x.invalid() {
                    return false;
                }

                x.mode = OperandMode::NoValue;
                record(self, None, &vec![iempty], false);
            }
            Builtin::Print | Builtin::Println => {
                // print(x, y, ...)
                // println(x, y, ...)
                let mut params = vec![];
                for i in 0..nargs {
                    if i > 0 {
                        // first argument already evaluated
                        unpack_result.as_ref().unwrap().get(self, x, i, fctx);
                    }
                    let msg = format!("argument to {}", self.builtin_info(id).name);
                    self.assignment(x, None, &msg, fctx);
                    if x.invalid() {
                        return false;
                    }
                    params.push(x.typ.unwrap());
                }

                x.mode = OperandMode::NoValue;
                // note: not variadic
                record(self, None, &params, false);
            }
            Builtin::Recover => {
                // recover() interface{}
                x.mode = OperandMode::Value;
                x.typ = Some(self.tc_objs.new_t_empty_interface());
                record(self, x.typ, &vec![], false);
            }
            Builtin::Alignof => {
                // unsafe.Alignof(x T) uintptr
                self.assignment(x, None, "argument to unsafe.Alignof", fctx);
                if x.invalid() {
                    return false;
                }
                // todo: not sure if Alignof will ever be used in goscript
                let align = Value::with_i64(0); // set Alignof to zero
                x.mode = OperandMode::Constant(align);
                x.typ = Some(self.basic_type(BasicType::Uintptr));
            }
            Builtin::Offsetof => {
                // unsafe.Offsetof(x T) uintptr, where x must be a selector
                // (no argument evaluated yet)
                let arg0 = &call.args[0];
                if let Expr::Selector(selx) = Checker::<S>::unparen(arg0) {
                    self.expr(x, &selx.expr, fctx);
                    if x.invalid() {
                        return false;
                    }
                    let base = lookup::deref_struct_ptr(x.typ.unwrap(), self.tc_objs);
                    let sel = &self.ast_ident(selx.sel).name;
                    let result = lookup::lookup_field_or_method(
                        base,
                        false,
                        Some(self.pkg),
                        sel,
                        self.tc_objs,
                    );
                    let (obj, indices) = match result {
                        LookupResult::Ambiguous(_)
                        | LookupResult::NotFound
                        | LookupResult::BadMethodReceiver => {
                            let td = self.new_dis(&base);
                            let msg = if result == LookupResult::BadMethodReceiver {
                                format!("field {} is embedded via a pointer in {}", sel, td)
                            } else {
                                format!("{} has no single field {}", td, sel)
                            };
                            self.invalid_arg(x.pos(self.ast_objs), &msg);
                            return false;
                        }
                        LookupResult::Entry(okey, indices, _) => {
                            if self.lobj(okey).entity_type().is_func() {
                                let ed = self.new_dis(arg0);
                                self.invalid_arg(ed.pos(), &format!("{} is a method value", ed));
                            }
                            (okey, indices)
                        }
                    };

                    let selection = Selection::new(
                        SelectionKind::FieldVal,
                        Some(base),
                        obj,
                        indices,
                        false,
                        self.tc_objs,
                    );
                    self.result.record_selection(selx, selection);

                    // todo: not sure if Offsetof will ever be used in goscript
                    let offs = Value::with_i64(0); // set Offsetof to zero
                    x.mode = OperandMode::Constant(offs);
                    x.typ = Some(self.basic_type(BasicType::Uintptr));
                } else {
                    let ed = self.new_dis(arg0);
                    self.invalid_arg(ed.pos(), &format!("{} is not a selector expression", ed));
                    self.use_exprs(&vec![arg0.clone()], fctx);
                    return false;
                }
                // result is constant - no need to record signature
            }
            Builtin::Sizeof => {
                // unsafe.Sizeof(x T) uintptr
                self.assignment(x, None, "argument to unsafe.Sizeof", fctx);
                if x.invalid() {
                    return false;
                }
                let size = Value::with_u64(typ::size_of(&x.typ.unwrap(), self.tc_objs) as u64);
                x.mode = OperandMode::Constant(size);
                x.typ = Some(self.basic_type(BasicType::Uintptr));
                // result is constant - no need to record signature
            }
            Builtin::Assert => {
                // assert(pred) causes a typechecker error if pred is false.
                // The result of assert is the value of pred if there is no error.
                // oxfeefeee: minor change to make it work at runtime
                let default_err = || {
                    let xd = self.new_dis(x);
                    self.invalid_arg(xd.pos(), &format!("{} is not a boolean", xd));
                    false
                };
                match &x.mode {
                    OperandMode::Constant(v) => {
                        if !typ::is_boolean(x.typ.unwrap(), self.tc_objs) {
                            return default_err();
                        }
                        match v {
                            Value::Bool(b) => {
                                if !*b {
                                    let expr = Expr::Call(call.clone());
                                    let ed = self.new_dis(&expr);
                                    self.error(ed.pos(), format!("{} failed", ed))
                                    // compile-time assertion failure - safe to continue
                                }
                            }
                            _ => {
                                let xd = self.new_dis(x);
                                let msg = format!(
                                    "internal error: value of {} should be a boolean constant",
                                    xd
                                );
                                self.error(xd.pos(), msg);
                                return false;
                            }
                        }
                    }
                    _ => {
                        let tkey = x.typ.unwrap();
                        if !typ::is_boolean(tkey, self.tc_objs) {
                            return default_err();
                        }
                        // only record when the argument is not constant
                        x.mode = OperandMode::NoValue;
                        record(self, None, &vec![tkey], false);
                    }
                }
            }
            Builtin::Trace => {
                // trace(x, y, z, ...) dumps the positions, expressions, and
                // values of its arguments. The result of trace is the value
                // of the first argument.
                // Note: trace is only available in self-test mode.
                // (no argument evaluated yet)
                if nargs == 0 {
                    let expr = Expr::Call(call.clone());
                    let ed = self.new_dis(&expr);
                    self.dump(Some(ed.pos()), "trace() without arguments");
                    x.mode = OperandMode::NoValue;
                    return true;
                }
                let mut x_temp = Operand::new(); // only used for dumping
                let mut cur_x = x;
                for arg in call.args.iter() {
                    self.raw_expr(cur_x, arg, None, fctx); // permit trace for types, e.g.: new(trace(T))
                    let xd = self.new_dis(cur_x);
                    self.dump(Some(xd.pos()), &format!("{}", xd));
                    cur_x = &mut x_temp;
                }
                // x contains info of the first argument
                // trace is only available in test mode - no need to record signature
            }
            Builtin::Ffi => {
                // native(I, string_id, params...)
                // (no argument evaluated yet)
                let arg0 = &call.args[0];
                let arg0t = self.type_expr(arg0, fctx);
                if arg0t == invalid_type {
                    return false;
                }

                if self
                    .otype(arg0t)
                    .underlying_val(self.tc_objs)
                    .try_as_interface()
                    .is_none()
                {
                    let ed = self.new_dis(arg0);
                    self.invalid_arg(
                        ed.pos(),
                        &format!("cannot create native type as {}; must be interface", ed),
                    );
                    return false;
                }

                self.expr(x, &call.args[1], fctx);
                if x.invalid() {
                    return false;
                }
                let stype = x.typ.unwrap();
                if !typ::is_string(stype, self.tc_objs) {
                    let xd = self.new_dis(x);
                    self.invalid_arg(xd.pos(), &format!("{} is not a string", xd));
                    return false;
                }

                let params = vec![arg0t, stype];

                // Disable extra arguments
                // for i in 2..nargs {
                //     self.expr(x, &call.args[i], fctx);
                //     if x.invalid() {
                //         return false;
                //     }
                //     let msg = format!("argument to {}", self.builtin_info(id).name);
                //     self.assignment(x, None, &msg, fctx);
                //     if x.invalid() {
                //         return false;
                //     }
                //     params.push(x.typ.unwrap());
                // }

                x.mode = OperandMode::Value;
                x.typ = Some(arg0t);
                // recorded as non-variadic
                record(self, Some(arg0t), &params, false);
            }
        }
        true
    }
}

/// make_sig makes a signature for the given argument and result types.
/// Default types are used for untyped arguments, and res may be nil.
fn make_sig(
    objs: &mut TCObjects,
    res: Option<TypeKey>,
    args: &[TypeKey],
    variadic: bool,
) -> TypeKey {
    let list: Vec<ObjKey> = args
        .iter()
        .map(|&x| {
            let ty = Some(untyped_default_type(x, objs));
            objs.new_var(0, None, "".to_owned(), ty)
        })
        .collect();
    let params = objs.new_t_tuple(list);
    let rlist = res.map_or(vec![], |x| {
        vec![objs.new_var(0, None, "".to_owned(), Some(x))]
    });
    let results = objs.new_t_tuple(rlist);
    objs.new_t_signature(None, None, params, results, variadic)
}

/// implicit_array_deref returns A if typ is of the form *A and A is an array;
/// otherwise it returns typ.
fn implicit_array_deref(t: TypeKey, objs: &TCObjects) -> TypeKey {
    let ty = &objs.types[t];
    if let Some(detail) = ty.try_as_pointer() {
        let base = typ::underlying_type(detail.base(), objs);
        if objs.types[base].try_as_array().is_some() {
            return base;
        }
    }
    t
}