1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
use crate::fem_io::{GetIn, GetOut};

use super::{DiscreteStateSpace, Exponential, ExponentialMatrix, Solver};
use gmt_fem::{Result, FEM};
use interface::TimerMarker;
use nalgebra as na;
use rayon::prelude::*;
use std::{
    collections::HashMap,
    fmt,
    sync::Arc,
    thread::{self, JoinHandle},
};

impl<T: Solver + Default> TimerMarker for DiscreteModalSolver<T> {}

#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[derive(Debug, Default)]
pub struct PsiTimesU {
    data: Vec<f64>,
    #[cfg_attr(feature = "serde", serde(skip))]
    handler: Option<JoinHandle<na::DVector<f64>>>,
}
impl PsiTimesU {
    pub fn mul(&mut self, u: &[f64], mat: &Arc<na::DMatrix<f64>>) {
        let clone_mat = Arc::clone(mat);
        let vec_u = na::DVector::from_column_slice(u);
        self.handler = Some(thread::spawn(move || &*clone_mat * vec_u));
    }
    pub fn join(&mut self) -> &[f64] {
        self.handler.take().map(|h| {
            let y = h.join().unwrap();
            if self.data.is_empty() {
                self.data = y.as_slice().to_vec();
            } else {
                self.data.copy_from_slice(y.as_slice());
            }
        });
        self.data.as_slice()
    }
}

/// This structure represents the actual state space model of the telescope
///
/// The state space discrete model is made of several discrete 2nd order different equation solvers, all independent and solved concurrently
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[derive(Debug, Default)]
pub struct DiscreteModalSolver<T: Solver + Default> {
    /// Model input vector
    pub u: Vec<f64>,
    /// Model output vector
    pub y: Vec<f64>,
    pub y_sizes: Vec<usize>,
    /// vector of state models
    pub state_space: Vec<T>,
    /// Static gain correction matrix
    pub psi_dcg: Option<Arc<na::DMatrix<f64>>>,
    /// Static gain correction vector
    pub psi_times_u: PsiTimesU,
    pub ins: Vec<Box<dyn GetIn>>,
    pub outs: Vec<Box<dyn GetOut>>,
    pub facesheet_nodes: Option<HashMap<u8, Vec<f64>>>,
}
impl<T: Solver + Default> DiscreteModalSolver<T> {
    /*
      /// Serializes the model using [bincode](https://docs.rs/bincode/1.3.3/bincode/)
      fn dump(&self, filename: &str) -> REs {
      let file = File::create(filename)
      }
    */
    /// Returns the FEM state space builer
    pub fn from_fem(fem: FEM) -> DiscreteStateSpace<'static, T> {
        fem.into()
    }
    /// Loads a FEM model, saved in a second order form, from a zip archive file located in a directory given by the `FEM_REPO` environment variable
    pub fn from_env() -> Result<DiscreteStateSpace<'static, T>> {
        let fem = FEM::from_env()?;
        Ok(DiscreteModalSolver::from_fem(fem))
    }
}

impl Iterator for DiscreteModalSolver<Exponential> {
    type Item = ();
    fn next(&mut self) -> Option<Self::Item> {
        let n = self.y.len();
        //        match &self.u {
        let _u_ = &self.u;
        self.y = self
            .state_space
            .par_iter_mut()
            .fold(
                || vec![0f64; n],
                |mut a: Vec<f64>, m| {
                    a.iter_mut().zip(m.solve(_u_)).for_each(|(yc, y)| {
                        *yc += y;
                    });
                    a
                },
            )
            .reduce(
                || vec![0f64; n],
                |mut a: Vec<f64>, b: Vec<f64>| {
                    a.iter_mut().zip(b.iter()).for_each(|(a, b)| {
                        *a += *b;
                    });
                    a
                },
            );
        Some(())
    }
}

impl Iterator for DiscreteModalSolver<ExponentialMatrix> {
    type Item = ();
    fn next(&mut self) -> Option<Self::Item> {
        let n = self.y.len();
        //        match &self.u {
        let _u_ = &self.u;
        self.y = self
            .state_space
            .par_iter_mut()
            .fold(
                || vec![0f64; n],
                |mut a: Vec<f64>, m| {
                    a.iter_mut().zip(m.solve(_u_)).for_each(|(yc, y)| {
                        *yc += y;
                    });
                    a
                },
            )
            .reduce(
                || vec![0f64; n],
                |mut a: Vec<f64>, b: Vec<f64>| {
                    a.iter_mut().zip(b.iter()).for_each(|(a, b)| {
                        *a += *b;
                    });
                    a
                },
            );

        if let Some(psi_dcg) = &self.psi_dcg {
            let psi_times_u = self.psi_times_u.join();
            self.y
                .iter_mut()
                .zip(psi_times_u)
                .for_each(|(v1, v2)| *v1 += *v2);
            self.psi_times_u.mul(&self.u, psi_dcg);
            // let u_nalgebra = na::DVector::from_column_slice(&self.u);
            // self.psi_times_u = (psi_dcg * u_nalgebra).as_slice().to_vec();
        }

        Some(())
    }
}
impl<T: Solver + Default> fmt::Display for DiscreteModalSolver<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            r##"
DiscreteModalSolver:
 - inputs ({}):
{:}
 - outputs ({}):
{:}
 - {:} 2x2 state space models
"##,
            self.u.len(),
            self.ins
                .iter()
                .map(|x| x.fem_type())
                .collect::<Vec<String>>()
                .join("\n"),
            self.y.len(),
            self.outs
                .iter()
                .map(|x| x.fem_type())
                .collect::<Vec<String>>()
                .join("\n"),
            self.state_space.len(),
        )
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::fem_io::actors_inputs::OSSElDriveTorque;
    use crate::fem_io::actors_outputs::OSSElEncoderAngle;
    use gmt_fem::FEM;

    #[test]
    fn serde() {
        let state_space = {
            let fem = FEM::from_env().unwrap();
            DiscreteModalSolver::<ExponentialMatrix>::from_fem(fem)
                .sampling(1e3)
                .max_eigen_frequency(0.1)
                .ins::<OSSElDriveTorque>()
                .outs::<OSSElEncoderAngle>()
                .build()
                .unwrap()
        };
        dbg!(&state_space);

        let json = serde_json::to_string(&state_space).unwrap();
        println!("{:#}", &json);
        let q: DiscreteModalSolver<ExponentialMatrix> = serde_json::from_str(&json).unwrap();
        dbg!(&q);
    }
}