Expand description
§gm-sm2
A Pure Rust High-Performance Implementation of China’s Standards of Encryption Algorithms SM2
- ✅ SM2 ECDSA: digital signature algorithm defined in [GBT.32918.2-2016], [ISO.IEC.14888-3] (SM2-2)
- ✅ SM2 ECDH: key exchange protocol defined in [GBT.32918.3-2016] (SM2-3)
- ✅ SM2 PKE: public key encryption algorithm defined in [GBT.32918.4-2016] (SM2-4)
§Example
§encrypt & decrypt
use gm_sm2::key::{gen_keypair, CompressModle};
fn main() {
let (pk, sk) = gen_keypair(CompressModle::Compressed).unwrap();
let msg = "你好 world,asjdkajhdjadahkubbhj12893718927391873891,@@!! world,1231 wo12321321313asdadadahello world,hello world".as_bytes();
let encrypt = pk.encrypt(msg).unwrap();
let plain = sk.decrypt(&encrypt).unwrap();
assert_eq!(msg, plain)
}
§sign & verify
use gm_sm2::key::{gen_keypair, CompressModle};
fn main() {
let msg = b"hello";
let (pk, sk) = gen_keypair(CompressModle::Compressed).unwrap();
let signature = sk.sign(None, msg).unwrap();
pk.verify(None, msg, &signature).unwrap()
}
§generate pk & sk from string
use gm_sm2::key::{CompressModle};
fn main() {
let msg = b"hello";
let pk_hex = hex::decode("04D5548C7825CBB56150A3506CD57464AF8A1AE0519DFAF3C58221DC810CAF28DD921073768FE3D59CE54E79A49445CF73FED23086537027264D168946D479533E").unwrap();
let pk = gm_sm2::key::Sm2PublicKey::new(&pk_hex[..], CompressModle::Uncompressed).unwrap();
let sk_hex =
hex::decode("128b2fa8bd433c6c068c8d803dff79792a519a55171b1b650c23661d15897263").unwrap();
let sk = gm_sm2::key::Sm2PrivateKey::new(&sk_hex[..], CompressModle::Compressed).unwrap();
let signature = sk.sign(None, msg).unwrap();
pk.verify(None, msg, &signature).unwrap();
}
§key exchange
use gm_sm2::exchange::Exchange;
use gm_sm2::key::{gen_keypair, CompressModle};
fn main() {
let id_a = "alice123@qq.com";
let id_b = "bob456@qq.com";
let (pk_a, sk_a) = gen_keypair(CompressModle::Compressed).unwrap();
let (pk_b, sk_b) = gen_keypair(CompressModle::Compressed).unwrap();
let mut user_a = Exchange::new(8, Some(id_a), &pk_a, &sk_a, Some(id_b), &pk_b).unwrap();
let mut user_b = Exchange::new(8, Some(id_b), &pk_b, &sk_b, Some(id_a), &pk_a).unwrap();
let ra_point = user_a.exchange_1().unwrap();
let (rb_point, sb) = user_b.exchange_2(&ra_point).unwrap();
let sa = user_a.exchange_3(&rb_point, sb).unwrap();
let succ = user_b.exchange_4(sa, &ra_point).unwrap();
println!("test_key_exchange = {}", succ);
// assert_eq!(user_a.k, user_b.k);
}
§Reference
Modules§
Constants§
- ALGORITHM_
OID - OID_
SM2_ CMS_ 1 - oid refer to GM/T 0006
- OID_
SM2_ CMS_ 3 - OID_
SM2_ CMS_ DATA - oid refer to GM/T 0010 pkcs#7
- OID_
SM2_ CMS_ ENCRYPTED - OID_
SM2_ CMS_ ENVELOPED - OID_
SM2_ CMS_ KEY_ AGREEMENT_ INFO - OID_
SM2_ CMS_ SIGNED - OID_
SM2_ CMS_ SIGNED_ AND_ ENVELOPED - OID_
SM2_ PKCS8 - oid to pkcs8
Traits§
- FeOperation
- Fp 的加法,减法,乘法并不是简单的四则运算。其运算结果的值必须在Fp的有限域中,这样保证椭圆曲线变成离散的点