1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-Exception
// Copyright 2024 Daniel Fox Franke.

//! Types related to instruction operands.

use core::fmt::Display;

use bytes::BufMut;

use crate::{
    cast::CastSign,
    error::AssemblerError,
    resolver::{ResolvedAddr, Resolver},
    LabelRef,
};

/// An operand indicating where to get a value from.
///
/// For variants that accept a label+offset, it is unsupported to provide a
/// label in RAM with an offset that points backward into ROM. This will return
/// an overflow error when you try to assemble it.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum LoadOperand<L> {
    /// Pop the value from the stack.
    Pop,
    /// Use the immediate value of the operand.
    Imm(i32),
    /// Load the value from the stack at the given offset from the frame
    /// pointer.
    FrameAddr(u32),
    /// Use the address corresponding to the given label+offset and right-shift
    /// as an immediate value.
    ///
    /// Generating an operand with a right-shift of 1 or 2 is useful with the
    /// array load/store instructions, allowing an unaligned access to an
    /// aligned array, as opposed to the usual pattern of an aligned access to
    /// an unaligned array. The shift is computed *after* the offset, *i.e.*,
    /// the offset is still given in bytes. Shifting a label by more than its
    /// alignment will produce an error at assembly time.
    ImmLabel(LabelRef<L>, u8),
    /// Load the value from the address at the given label+offset.
    DerefLabel(LabelRef<L>),
    /// Compute an offset in order for a branch instruction to jump to the given
    /// label.
    ///
    /// When this label is resolved, the computed offset will be relative to the
    /// end of the *operand*. Jumps are computed relative to the end of the
    /// *instruction*. Fortunately, these are one-in-the-same, because every
    /// operand that Glulx interprets as an offset is the last operand of the
    /// instruction in which it occurs. The assembler won't stop you from using
    /// this variant in other locations. If you do, you'll get a nonsensical
    /// result, but you were already doing something nonsensical so GIGO.
    Branch(L),
}

/// An operand indicating where to put a value.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum StoreOperand<L> {
    /// Push the value to the stack.
    Push,
    /// Discard the value.
    Discard,
    /// Store the value to the stack address at the given offset from the frame
    /// pointer.
    FrameAddr(u32),
    /// Store the value to the address given by the label+offset.
    DerefLabel(LabelRef<L>),
}

/// An encoded operand ready to be serialized.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub(crate) enum RawOperand {
    /// 0: Load zero, or discard store
    Null,
    /// 1: Constant, -80 to 7F
    Imm8(i8),
    /// 2: Constant, -8000 to 7FFFF
    Imm16(i16),
    /// 3: Constant, any value
    Imm32(i32),
    /// 5: Contents of address 00 to FF
    Addr8(u8),
    /// 6: Contents of address 0000 to FFFF
    Addr16(u16),
    /// 7: Contents of any address
    Addr32(u32),
    /// 8: Value pushed/popped off stack
    Stack,
    /// 9: Call frame local at address 00 to FF
    Frame8(u8),
    /// A: Call frame local at address 0000 to FFFF
    Frame16(u16),
    /// B: Call frame local at any address
    Frame32(u32),
    /// D: Contents of RAM address 00 to FF
    Ram8(u8),
    /// E: Contents of RAM address 0000 to FFFF
    Ram16(u16),
    /// F: Contents of RAM, any address
    Ram32(u32),
}

impl<L> LoadOperand<L> {
    /// Applies the given mapping function to the label (if any) within the operand.
    pub fn map<F, M>(self, mut f: F) -> LoadOperand<M>
    where
        F: FnMut(L) -> M,
    {
        match self {
            LoadOperand::Pop => LoadOperand::Pop,
            LoadOperand::Imm(x) => LoadOperand::Imm(x),
            LoadOperand::FrameAddr(p) => LoadOperand::FrameAddr(p),
            LoadOperand::ImmLabel(l, shift) => LoadOperand::ImmLabel(l.map(f), shift),
            LoadOperand::DerefLabel(l) => LoadOperand::DerefLabel(l.map(f)),
            LoadOperand::Branch(l) => LoadOperand::Branch(f(l)),
        }
    }
}

impl<L> LoadOperand<L>
where
    L: Clone,
{
    /// Resolve labels in the operand, provided that the operand occurs at the
    /// given position and RAM begins at the given address.
    pub(crate) fn resolve<R>(
        &self,
        position: u32,
        resolver: &R,
    ) -> Result<RawOperand, AssemblerError<L>>
    where
        R: Resolver<Label = L>,
    {
        Ok(match self {
            LoadOperand::Pop => RawOperand::Stack,
            LoadOperand::Imm(x) => {
                if *x == 0 {
                    RawOperand::Null
                } else if let Ok(x) = i8::try_from(*x) {
                    RawOperand::Imm8(x)
                } else if let Ok(x) = i16::try_from(*x) {
                    RawOperand::Imm16(x)
                } else {
                    RawOperand::Imm32(*x)
                }
            }
            LoadOperand::FrameAddr(x) => {
                if let Ok(x) = u8::try_from(*x) {
                    RawOperand::Frame8(x)
                } else if let Ok(x) = u16::try_from(*x) {
                    RawOperand::Frame16(x)
                } else {
                    RawOperand::Frame32(*x)
                }
            }
            LoadOperand::ImmLabel(l, shift) => {
                let unshifted_addr = l.resolve_absolute(resolver)?;
                if unshifted_addr.trailing_zeros() < (*shift).into() {
                    return Err(AssemblerError::InsufficientAlignment {
                        label: l.0.clone(),
                        offset: l.1,
                        shift: *shift,
                    });
                }

                let addr = (unshifted_addr >> *shift).cast_sign();

                if addr == 0 {
                    RawOperand::Null
                } else if let Ok(x) = i8::try_from(addr) {
                    RawOperand::Imm8(x)
                } else if let Ok(x) = i16::try_from(addr) {
                    RawOperand::Imm16(x)
                } else {
                    RawOperand::Imm32(addr)
                }
            }
            LoadOperand::DerefLabel(l) => match l.resolve(resolver)? {
                ResolvedAddr::Rom(addr) => {
                    if let Ok(x) = u8::try_from(addr) {
                        RawOperand::Addr8(x)
                    } else if let Ok(x) = u16::try_from(addr) {
                        RawOperand::Addr16(x)
                    } else {
                        RawOperand::Addr32(addr)
                    }
                }
                ResolvedAddr::Ram(ramaddr) => {
                    // An offset in RAM which points backward into ROM is
                    // intentionally unsupported here.
                    if let Ok(x) = u8::try_from(ramaddr) {
                        RawOperand::Ram8(x)
                    } else if let Ok(x) = u16::try_from(ramaddr) {
                        RawOperand::Ram16(x)
                    } else {
                        RawOperand::Ram32(ramaddr)
                    }
                }
            },
            LoadOperand::Branch(l) => {
                let target = resolver.resolve_absolute(l)?;

                // We have to be careful here not to shrink an operand in such a
                // way as it has to grow again because shrinking it increased
                // the offset. Also not to accidentally generate 0 or 1 as an
                // offset, which are interpreted specially by Glulx. So, first
                // pick an operand size starting with 1, compute the resulting
                // offset based on that size, and see if it would fit and not be
                // 0/1.  If not, move on to the next larger size.

                let null_offset = (target.cast_sign())
                    .wrapping_sub(position.cast_sign())
                    .wrapping_add(2);

                let i8_offset = null_offset.wrapping_sub(1);
                if let Ok(x) = i8::try_from(i8_offset) {
                    if x != 0 && x != 1 {
                        return Ok(RawOperand::Imm8(x));
                    }
                }

                let i16_offset = null_offset.wrapping_sub(2);
                if let Ok(x) = i16::try_from(i16_offset) {
                    if x != 0 && x != 1 {
                        return Ok(RawOperand::Imm16(x));
                    }
                }

                let i32_offset = null_offset.wrapping_sub(4);
                // Shouldn't be possible with a 4-byte operand because we'd be
                // jumping into the middle of the operand.
                assert!(i32_offset != 0 && i32_offset != 1);
                return Ok(RawOperand::Imm32(i32_offset));
            }
        })
    }

    /// Returns an upper bound on how long this operand can end up being,
    /// regardless of where it's placed.
    pub(crate) fn worst_len(&self) -> usize {
        match self {
            LoadOperand::Pop => 0,
            LoadOperand::Imm(x) => {
                if *x == 0 {
                    0
                } else if i8::try_from(*x).is_ok() {
                    1
                } else if i16::try_from(*x).is_ok() {
                    2
                } else {
                    4
                }
            }
            LoadOperand::FrameAddr(x) => {
                if u8::try_from(*x).is_ok() {
                    1
                } else if u16::try_from(*x).is_ok() {
                    2
                } else {
                    4
                }
            }
            LoadOperand::ImmLabel(_, _) => 4,
            LoadOperand::DerefLabel(_) => 4,
            LoadOperand::Branch(_) => 4,
        }
    }
}

impl<L> Display for LoadOperand<L>
where
    L: Display,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            LoadOperand::Pop => f.write_str("pop")?,
            LoadOperand::Imm(x) => write!(f, "{x:#x}")?,
            LoadOperand::FrameAddr(a) => {
                write!(f, "${}", a / 4)?;
                if a % 4 != 0 {
                    write!(f, ".{}", a % 4)?;
                }
            }
            LoadOperand::ImmLabel(LabelRef(label, offset), shift) => {
                write!(f, "({label}")?;
                if *offset != 0 {
                    write!(f, "{offset:+#x}")?;
                }
                if *shift != 0 {
                    write!(f, ">>{shift}")?;
                }
                write!(f, ")")?;
            }
            LoadOperand::DerefLabel(LabelRef(label, offset)) => {
                write!(f, "[{label}")?;
                if *offset != 0 {
                    write!(f, "{offset:+#x}")?;
                }
                write!(f, "]")?;
            }
            LoadOperand::Branch(label) => {
                write!(f, "~({label})")?;
            }
        };
        Ok(())
    }
}

impl<L> StoreOperand<L> {
    /// Applies the given mapping function to the label (if any) within the operand.
    pub fn map<F, M>(self, f: F) -> StoreOperand<M>
    where
        F: FnMut(L) -> M,
    {
        match self {
            StoreOperand::Push => StoreOperand::Push,
            StoreOperand::Discard => StoreOperand::Discard,
            StoreOperand::FrameAddr(x) => StoreOperand::FrameAddr(x),
            StoreOperand::DerefLabel(l) => StoreOperand::DerefLabel(l.map(f)),
        }
    }
}

impl<L> StoreOperand<L>
where
    L: Clone,
{
    /// Resolve labels in the operand, provided that the operand occurs at the
    /// given position and RAM begins at the given address. These arguments are
    /// in fact ignored, but we need this type signature to be the same as the
    /// one for [`LoadOperand::resolve`] in order for our macros to work.
    pub(crate) fn resolve<R>(
        &self,
        _position: u32,
        resolver: &R,
    ) -> Result<RawOperand, AssemblerError<L>>
    where
        R: Resolver<Label = L>,
    {
        Ok(match self {
            StoreOperand::Push => RawOperand::Stack,
            StoreOperand::Discard => RawOperand::Null,
            StoreOperand::FrameAddr(x) => {
                if let Ok(x) = u8::try_from(*x) {
                    RawOperand::Frame8(x)
                } else if let Ok(x) = u16::try_from(*x) {
                    RawOperand::Frame16(x)
                } else {
                    RawOperand::Frame32(*x)
                }
            }
            StoreOperand::DerefLabel(l) => match l.resolve(resolver)? {
                ResolvedAddr::Rom(addr) => {
                    if let Ok(x) = u8::try_from(addr) {
                        RawOperand::Addr8(x)
                    } else if let Ok(x) = u16::try_from(addr) {
                        RawOperand::Addr16(x)
                    } else {
                        RawOperand::Addr32(addr)
                    }
                }
                ResolvedAddr::Ram(addr) => {
                    if let Ok(x) = u8::try_from(addr) {
                        RawOperand::Ram8(x)
                    } else if let Ok(x) = u16::try_from(addr) {
                        RawOperand::Ram16(x)
                    } else {
                        RawOperand::Ram32(addr)
                    }
                }
            },
        })
    }

    /// Returns an upper bound on how long this operand can end up being,
    /// regardless of where it's placed.
    pub(crate) fn worst_len(&self) -> usize {
        match self {
            StoreOperand::Push => 0,
            StoreOperand::Discard => 0,
            StoreOperand::FrameAddr(x) => {
                if u8::try_from(*x).is_ok() {
                    1
                } else if u16::try_from(*x).is_ok() {
                    2
                } else {
                    4
                }
            }
            StoreOperand::DerefLabel(_) => 4,
        }
    }
}

impl<L> Display for StoreOperand<L>
where
    L: Display,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            StoreOperand::Push => f.write_str("push")?,
            StoreOperand::Discard => f.write_str("discard")?,
            StoreOperand::FrameAddr(a) => {
                write!(f, "${}", a / 4)?;
                if a % 4 != 0 {
                    write!(f, ".{}", a % 4)?;
                }
            }
            StoreOperand::DerefLabel(LabelRef(label, offset)) => {
                write!(f, "[{label}")?;
                if *offset != 0 {
                    write!(f, "{offset:+#x}")?;
                }
                write!(f, "]")?;
            }
        }
        Ok(())
    }
}

impl RawOperand {
    /// Returns the encoded length of the operand.
    pub(crate) fn len(&self) -> usize {
        match self {
            RawOperand::Null => 0,
            RawOperand::Imm8(_) => 1,
            RawOperand::Imm16(_) => 2,
            RawOperand::Imm32(_) => 4,
            RawOperand::Addr8(_) => 1,
            RawOperand::Addr16(_) => 2,
            RawOperand::Addr32(_) => 4,
            RawOperand::Stack => 0,
            RawOperand::Frame8(_) => 1,
            RawOperand::Frame16(_) => 2,
            RawOperand::Frame32(_) => 4,
            RawOperand::Ram8(_) => 1,
            RawOperand::Ram16(_) => 2,
            RawOperand::Ram32(_) => 4,
        }
    }

    /// Returns the addressing-mode nibble.
    pub(crate) fn mode(&self) -> u8 {
        match self {
            RawOperand::Null => 0,
            RawOperand::Imm8(_) => 1,
            RawOperand::Imm16(_) => 2,
            RawOperand::Imm32(_) => 3,
            RawOperand::Addr8(_) => 5,
            RawOperand::Addr16(_) => 6,
            RawOperand::Addr32(_) => 7,
            RawOperand::Stack => 8,
            RawOperand::Frame8(_) => 9,
            RawOperand::Frame16(_) => 0xa,
            RawOperand::Frame32(_) => 0xb,
            RawOperand::Ram8(_) => 0xd,
            RawOperand::Ram16(_) => 0xe,
            RawOperand::Ram32(_) => 0xf,
        }
    }

    /// Serializes the operand.
    pub(crate) fn serialize<B: BufMut>(&self, mut buf: B) {
        match self {
            RawOperand::Null => {}
            RawOperand::Imm8(x) => buf.put_i8(*x),
            RawOperand::Imm16(x) => buf.put_i16(*x),
            RawOperand::Imm32(x) => buf.put_i32(*x),
            RawOperand::Addr8(x) => buf.put_u8(*x),
            RawOperand::Addr16(x) => buf.put_u16(*x),
            RawOperand::Addr32(x) => buf.put_u32(*x),
            RawOperand::Stack => {}
            RawOperand::Frame8(x) => buf.put_u8(*x),
            RawOperand::Frame16(x) => buf.put_u16(*x),
            RawOperand::Frame32(x) => buf.put_u32(*x),
            RawOperand::Ram8(x) => buf.put_u8(*x),
            RawOperand::Ram16(x) => buf.put_u16(*x),
            RawOperand::Ram32(x) => buf.put_u32(*x),
        }
    }
}

/// Creates an immediate operand out of the given `f32`.
#[inline]
pub fn f32_to_imm<L>(x: f32) -> LoadOperand<L> {
    LoadOperand::Imm(x.to_bits().cast_sign())
}

/// Creates a pair of immediate operands out of the given `f64`, returned as (hi,lo).
#[allow(clippy::as_conversions, clippy::cast_possible_truncation)]
#[inline]
pub fn f64_to_imm<L>(x: f64) -> (LoadOperand<L>, LoadOperand<L>) {
    let n = x.to_bits();
    let high = (n >> 32) as u32;
    let low = n as u32;
    (
        LoadOperand::Imm(high.cast_sign()),
        LoadOperand::Imm(low.cast_sign()),
    )
}