1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
use std::mem;
use byteorder::{LE, ByteOrder};
use std::marker::PhantomData;

/// Represents items that can be read by an [`Accessor`].
///
/// [`Accessor`]: struct.Accessor.html
pub trait Item {
    /// Create an object of this type from a byte slice.
    fn from_slice(slice: &[u8]) -> Self;
}

/// Visits the items in an [`Accessor`].
///
/// [`Accessor`]: struct.Accessor.html
#[derive(Copy, Clone, Debug)]
pub struct Iter<'a, T> {
    stride: usize,
    data: &'a [u8],
    _phantom: PhantomData<T>,
}

impl Item for i8 {
    fn from_slice(slice: &[u8]) -> Self {
        slice[0] as i8
    }
}

impl Item for i16 {
    fn from_slice(slice: &[u8]) -> Self {
        LE::read_i16(slice)
    }
}

impl Item for u8 {
    fn from_slice(slice: &[u8]) -> Self {
        slice[0]
    }
}

impl Item for u16 {
    fn from_slice(slice: &[u8]) -> Self {
        LE::read_u16(slice)
    }
}

impl Item for u32 {
    fn from_slice(slice: &[u8]) -> Self {
        LE::read_u32(slice)
    }
}

impl Item for f32 {
    fn from_slice(slice: &[u8]) -> Self {
        LE::read_f32(slice)
    }
}

impl<T: Item> Item for [T; 2] {
    fn from_slice(slice: &[u8]) -> Self {
        assert!(slice.len() >= 2 * mem::size_of::<T>());
        [T::from_slice(slice),
         T::from_slice(&slice[mem::size_of::<T>() ..])]
    }
}

impl<T: Item> Item for [T; 3] {
    fn from_slice(slice: &[u8]) -> Self {
        assert!(slice.len() >= 3 * mem::size_of::<T>());
        [T::from_slice(slice),
         T::from_slice(&slice[1 * mem::size_of::<T>() ..]),
         T::from_slice(&slice[2 * mem::size_of::<T>() ..])]
    }
}

impl<T: Item> Item for [T; 4] {
    fn from_slice(slice: &[u8]) -> Self {
        assert!(slice.len() >= 4 * mem::size_of::<T>());
        [T::from_slice(slice),
         T::from_slice(&slice[1 * mem::size_of::<T>() ..]),
         T::from_slice(&slice[2 * mem::size_of::<T>() ..]),
         T::from_slice(&slice[3 * mem::size_of::<T>() ..])]
    }
}

impl<'a, T> Iter<'a, T> {
    /// Constructor.
    pub fn new(
        accessor: super::Accessor,
        buffer_data: &'a [u8],
    ) -> Iter<'a, T> {
        debug_assert_eq!(mem::size_of::<T>(), accessor.size());
        debug_assert!(mem::size_of::<T>() > 0);
        let view = accessor.view();
        let stride = view.stride().unwrap_or(mem::size_of::<T>());
        debug_assert!(stride >= mem::size_of::<T>());
        let start = view.offset() + accessor.offset();
        let end = start + stride * (accessor.count() - 1) + mem::size_of::<T>();
        let data = &buffer_data[start .. end];
        Iter { stride, data, _phantom: PhantomData }
    }
}

impl<'a, T: Item> ExactSizeIterator for Iter<'a, T> {}
impl<'a, T: Item> Iterator for Iter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        let stride = if self.data.len() >= self.stride {
            Some(self.stride)
        } else if self.data.len() >= mem::size_of::<T>() {
            Some(mem::size_of::<T>())
        } else {
            None
        };
        if let Some(stride) = stride {
            let (val, data) = self.data.split_at(stride);
            let val = T::from_slice(val);
            self.data = data;
            Some(val)
        } else {
            None
        }
    }

    fn nth(&mut self, nth: usize) -> Option<Self::Item> {
        if let Some(val_data) = self.data.get(nth * self.stride ..) {
            if val_data.len() >= mem::size_of::<T>() {
                let val = T::from_slice(val_data);
                self.data = &val_data[self.stride.min(val_data.len()) ..];
                Some(val)
            } else {
                None
            }
        } else {
            None
        }
    }

    fn last(self) -> Option<Self::Item> {
        if self.data.len() >= mem::size_of::<T>() {
            self.data
                .get((self.data.len() - 1) / self.stride * self.stride ..)
                .map(T::from_slice)
        } else {
            None
        }
    }

    fn count(self) -> usize {
        self.size_hint().0
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let hint = self.data.len() / self.stride
            + (self.data.len() % self.stride >= mem::size_of::<T>()) as usize;
        (hint, Some(hint))
    }
}