1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
use byteorder::{ByteOrder, LE};
use std::marker::PhantomData;
use std::{iter, mem};

use crate::{accessor, buffer};

fn buffer_view_slice<'a, 's>(
    view: buffer::View<'a>,
    get_buffer_data: &dyn Fn(buffer::Buffer<'a>) -> Option<&'s [u8]>,
) -> Option<&'s [u8]> {
    let start = view.offset();
    let end = start + view.length();
    get_buffer_data(view.buffer()).and_then(|slice| slice.get(start..end))
}

/// General iterator for an accessor.
#[derive(Clone, Debug)]
pub enum Iter<'a, T: Item> {
    /// Standard accessor iterator.
    Standard(ItemIter<'a, T>),

    /// Iterator for accessor with sparse values.
    Sparse(SparseIter<'a, T>),
}

impl<'a, T: Item> Iterator for Iter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        match self {
            Iter::Standard(ref mut iter) => iter.next(),
            Iter::Sparse(ref mut iter) => iter.next(),
        }
    }

    fn nth(&mut self, nth: usize) -> Option<Self::Item> {
        match self {
            Iter::Standard(ref mut iter) => iter.nth(nth),
            Iter::Sparse(ref mut iter) => iter.nth(nth),
        }
    }

    fn last(self) -> Option<Self::Item> {
        match self {
            Iter::Standard(iter) => iter.last(),
            Iter::Sparse(iter) => iter.last(),
        }
    }

    fn count(self) -> usize {
        match self {
            Iter::Standard(iter) => iter.count(),
            Iter::Sparse(iter) => iter.count(),
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        match self {
            Iter::Standard(ref iter) => iter.size_hint(),
            Iter::Sparse(ref iter) => iter.size_hint(),
        }
    }
}

impl<'a, T: Item> ExactSizeIterator for Iter<'a, T> {}

/// Iterator over indices of sparse accessor.
#[derive(Clone, Debug)]
pub enum SparseIndicesIter<'a> {
    /// 8-bit indices.
    U8(ItemIter<'a, u8>),
    /// 16-bit indices.
    U16(ItemIter<'a, u16>),
    /// 32-bit indices.
    U32(ItemIter<'a, u32>),
}

impl<'a> Iterator for SparseIndicesIter<'a> {
    type Item = u32;
    fn next(&mut self) -> Option<Self::Item> {
        match *self {
            SparseIndicesIter::U8(ref mut iter) => iter.next().map(|x| x as u32),
            SparseIndicesIter::U16(ref mut iter) => iter.next().map(|x| x as u32),
            SparseIndicesIter::U32(ref mut iter) => iter.next(),
        }
    }
}

/// Iterates over a sparse accessor.
#[derive(Clone, Debug)]
pub struct SparseIter<'a, T: Item> {
    /// Base value iterator.
    ///
    /// This can be `None` if the base buffer view is not set. In this case the base values are all zero.
    base: Option<ItemIter<'a, T>>,

    /// Number of values in the base accessor
    ///
    /// Valid even when `base` is not set.
    base_count: usize,

    /// Sparse indices iterator.
    indices: iter::Peekable<SparseIndicesIter<'a>>,

    /// Sparse values iterator.
    values: ItemIter<'a, T>,

    /// Iterator counter.
    counter: u32,
}

impl<'a, T: Item> SparseIter<'a, T> {
    /// Constructor.
    ///
    /// Here `base` is allowed to be `None` when the base buffer view is not explicitly specified.
    pub fn new(
        base: Option<ItemIter<'a, T>>,
        indices: SparseIndicesIter<'a>,
        values: ItemIter<'a, T>,
    ) -> Self {
        Self::with_base_count(base, 0, indices, values)
    }

    /// Supplemental constructor.
    pub fn with_base_count(
        base: Option<ItemIter<'a, T>>,
        base_count: usize,
        indices: SparseIndicesIter<'a>,
        values: ItemIter<'a, T>,
    ) -> Self {
        Self {
            base,
            base_count,
            indices: indices.peekable(),
            values,
            counter: 0,
        }
    }
}

impl<'a, T: Item> Iterator for SparseIter<'a, T> {
    type Item = T;
    fn next(&mut self) -> Option<Self::Item> {
        let mut next_value = if let Some(base) = self.base.as_mut() {
            // If accessor.bufferView is set we let base decide when we have reached the end
            // of the iteration sequence.
            base.next()?
        } else if (self.counter as usize) < self.base_count {
            // Else, we continue iterating until we have generated the number of items
            // specified by accessor.count
            T::zero()
        } else {
            return None;
        };

        let next_sparse_index = self.indices.peek();
        if let Some(index) = next_sparse_index {
            if *index == self.counter {
                self.indices.next(); // advance
                next_value = self.values.next().unwrap();
            }
        }

        self.counter += 1;

        Some(next_value)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let hint = self.base_count - (self.counter as usize).min(self.base_count);
        (hint, Some(hint))
    }
}

impl<'a, T: Item> ExactSizeIterator for SparseIter<'a, T> {}

/// Represents items that can be read by an [`Accessor`].
///
/// [`Accessor`]: struct.Accessor.html
pub trait Item {
    /// Create an object of this type from a byte slice.
    fn from_slice(slice: &[u8]) -> Self;
    /// Create an object of this type that represents a zero value.
    fn zero() -> Self;
}

/// Visits the items in an [`Accessor`].
///
/// [`Accessor`]: struct.Accessor.html
#[derive(Copy, Clone, Debug)]
pub struct ItemIter<'a, T: Item> {
    stride: usize,
    data: &'a [u8],
    _phantom: PhantomData<T>,
}

impl Item for i8 {
    fn from_slice(slice: &[u8]) -> Self {
        slice[0] as i8
    }
    fn zero() -> Self {
        0
    }
}

impl Item for i16 {
    fn from_slice(slice: &[u8]) -> Self {
        LE::read_i16(slice)
    }
    fn zero() -> Self {
        0
    }
}

impl Item for u8 {
    fn from_slice(slice: &[u8]) -> Self {
        slice[0]
    }
    fn zero() -> Self {
        0
    }
}

impl Item for u16 {
    fn from_slice(slice: &[u8]) -> Self {
        LE::read_u16(slice)
    }
    fn zero() -> Self {
        0
    }
}

impl Item for u32 {
    fn from_slice(slice: &[u8]) -> Self {
        LE::read_u32(slice)
    }
    fn zero() -> Self {
        0
    }
}

impl Item for f32 {
    fn from_slice(slice: &[u8]) -> Self {
        LE::read_f32(slice)
    }
    fn zero() -> Self {
        0.0
    }
}

impl<T: Item + Copy> Item for [T; 2] {
    fn from_slice(slice: &[u8]) -> Self {
        assert!(slice.len() >= 2 * mem::size_of::<T>());
        [
            T::from_slice(slice),
            T::from_slice(&slice[mem::size_of::<T>()..]),
        ]
    }
    fn zero() -> Self {
        [T::zero(); 2]
    }
}

impl<T: Item + Copy> Item for [T; 3] {
    fn from_slice(slice: &[u8]) -> Self {
        assert!(slice.len() >= 3 * mem::size_of::<T>());
        [
            T::from_slice(slice),
            T::from_slice(&slice[mem::size_of::<T>()..]),
            T::from_slice(&slice[2 * mem::size_of::<T>()..]),
        ]
    }
    fn zero() -> Self {
        [T::zero(); 3]
    }
}

impl<T: Item + Copy> Item for [T; 4] {
    fn from_slice(slice: &[u8]) -> Self {
        assert!(slice.len() >= 4 * mem::size_of::<T>());
        [
            T::from_slice(slice),
            T::from_slice(&slice[mem::size_of::<T>()..]),
            T::from_slice(&slice[2 * mem::size_of::<T>()..]),
            T::from_slice(&slice[3 * mem::size_of::<T>()..]),
        ]
    }
    fn zero() -> Self {
        [T::zero(); 4]
    }
}

impl<'a, T: Item> ItemIter<'a, T> {
    /// Constructor.
    pub fn new(slice: &'a [u8], stride: usize) -> Self {
        ItemIter {
            data: slice,
            stride,
            _phantom: PhantomData,
        }
    }
}

impl<'a, 's, T: Item> Iter<'s, T> {
    /// Constructor.
    pub fn new<F>(accessor: super::Accessor<'a>, get_buffer_data: F) -> Option<Iter<'s, T>>
    where
        F: Clone + Fn(buffer::Buffer<'a>) -> Option<&'s [u8]>,
    {
        match accessor.sparse() {
            Some(sparse) => {
                // Using `if let` here instead of map to preserve the early return behavior.
                let base_iter = if let Some(view) = accessor.view() {
                    let stride = view.stride().unwrap_or(mem::size_of::<T>());

                    let start = accessor.offset();
                    let end = start + stride * (accessor.count() - 1) + mem::size_of::<T>();
                    let subslice = buffer_view_slice(view, &get_buffer_data)
                        .and_then(|slice| slice.get(start..end))?;

                    Some(ItemIter::new(subslice, stride))
                } else {
                    None
                };
                let base_count = accessor.count();

                let indices = sparse.indices();
                let values = sparse.values();
                let sparse_count = sparse.count();

                let index_iter = {
                    let view = indices.view();
                    let index_size = indices.index_type().size();
                    let stride = view.stride().unwrap_or(index_size);

                    let start = indices.offset();
                    let end = start + stride * (sparse_count - 1) + index_size;
                    let subslice = buffer_view_slice(view, &get_buffer_data)
                        .and_then(|slice| slice.get(start..end))?;

                    match indices.index_type() {
                        accessor::sparse::IndexType::U8 => {
                            SparseIndicesIter::U8(ItemIter::new(subslice, stride))
                        }
                        accessor::sparse::IndexType::U16 => {
                            SparseIndicesIter::U16(ItemIter::new(subslice, stride))
                        }
                        accessor::sparse::IndexType::U32 => {
                            SparseIndicesIter::U32(ItemIter::new(subslice, stride))
                        }
                    }
                };

                let value_iter = {
                    let view = values.view();
                    let stride = view.stride().unwrap_or(mem::size_of::<T>());

                    let start = values.offset();
                    let end = start + stride * (sparse_count - 1) + mem::size_of::<T>();
                    let subslice = buffer_view_slice(view, &get_buffer_data)
                        .and_then(|slice| slice.get(start..end))?;

                    ItemIter::new(subslice, stride)
                };

                Some(Iter::Sparse(SparseIter::with_base_count(
                    base_iter, base_count, index_iter, value_iter,
                )))
            }
            None => {
                debug_assert_eq!(mem::size_of::<T>(), accessor.size());
                debug_assert!(mem::size_of::<T>() > 0);

                accessor.view().and_then(|view| {
                    let stride = view.stride().unwrap_or(mem::size_of::<T>());
                    debug_assert!(
                        stride >= mem::size_of::<T>(),
                        "Mismatch in stride, expected at least {} stride but found {}",
                        mem::size_of::<T>(),
                        stride
                    );

                    let start = accessor.offset();
                    let end = start + stride * (accessor.count() - 1) + mem::size_of::<T>();
                    let subslice = buffer_view_slice(view, &get_buffer_data)
                        .and_then(|slice| slice.get(start..end))?;

                    Some(Iter::Standard(ItemIter {
                        stride,
                        data: subslice,
                        _phantom: PhantomData,
                    }))
                })
            }
        }
    }
}

impl<'a, T: Item> ExactSizeIterator for ItemIter<'a, T> {}
impl<'a, T: Item> Iterator for ItemIter<'a, T> {
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        let stride = if self.data.len() >= self.stride {
            Some(self.stride)
        } else if self.data.len() >= mem::size_of::<T>() {
            Some(mem::size_of::<T>())
        } else {
            None
        };
        if let Some(stride) = stride {
            let (val, data) = self.data.split_at(stride);
            let val = T::from_slice(val);
            self.data = data;
            Some(val)
        } else {
            None
        }
    }

    fn nth(&mut self, nth: usize) -> Option<Self::Item> {
        if let Some(val_data) = self.data.get(nth * self.stride..) {
            if val_data.len() >= mem::size_of::<T>() {
                let val = T::from_slice(val_data);
                self.data = &val_data[self.stride.min(val_data.len())..];
                Some(val)
            } else {
                None
            }
        } else {
            None
        }
    }

    fn last(self) -> Option<Self::Item> {
        if self.data.len() >= mem::size_of::<T>() {
            self.data
                .get((self.data.len() - 1) / self.stride * self.stride..)
                .map(T::from_slice)
        } else {
            None
        }
    }

    fn count(self) -> usize {
        self.size_hint().0
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let hint = self.data.len() / self.stride
            + (self.data.len() % self.stride >= mem::size_of::<T>()) as usize;
        (hint, Some(hint))
    }
}