1use glium::uniforms::AsUniformValue;
2
3use crate::{matrices::DMat3, quaternions::DQuat, vectors::{dvec3, DVec4, DVec3}};
4
5use super::DMat2;
6
7#[derive(Clone, Copy, PartialEq, Debug)]
8pub struct DMat4 {
10 matrix: [[f64; 4]; 4]
11}
12impl DMat4{
13 pub const IDENTITY: Self = DMat4::from_values(
14 1.0, 0.0, 0.0, 0.0,
15 0.0, 1.0, 0.0, 0.0,
16 0.0, 0.0, 1.0, 0.0,
17 0.0, 0.0, 0.0, 1.0
18 );
19 pub const fn from_scale(scale: DVec3) -> Self{
20 let (x, y, z) = (scale.x, scale.y, scale.z);
21 DMat4::from_values(
22 x, 0.0, 0.0, 0.0,
23 0.0, y, 0.0, 0.0,
24 0.0, 0.0, z, 0.0,
25 0.0, 0.0, 0.0, 1.0
26 )
27 }
28 pub const fn from_column_major_array(array: [[f64; 4]; 4]) -> Self { Self { matrix: array } }
29 pub const fn into_column_major_array(self) -> [[f64; 4]; 4] { self.matrix }
30 pub const fn from_row_major_array(array: [[f64; 4]; 4]) -> Self { Self { matrix: array }.transpose() }
31 pub const fn into_row_major_array(self) -> [[f64; 4]; 4] { self.transpose().matrix }
32 pub fn from_transform(pos: DVec3, scale: DVec3, rot: DQuat) -> Self {
35 let DQuat { r, i, j, k } = rot;
36 let (sx, sy, sz) = (scale.x * 2.0, scale.y * 2.0, scale.z * 2.0);
37 DMat4::from_values(
38 sx*(0.5 - (j*j + k*k)), sy*(i*j - k*r), sz*(i*k + j*r), pos.x,
39 sx*(i*j + k*r), sy*(0.5 - (i*i + k*k)), sz*(j*k - i*r), pos.y,
40 sx*(i*k - j*r), sy*(j*k + i*r), sz*(0.5 - (i*i + j*j)), pos.z,
41 0.0, 0.0, 0.0, 1.0
42 )
43 }
44 pub fn from_inverse_transform(pos: DVec3, scale: DVec3, rot: DQuat) -> Self {
46 let DQuat { r, i, j, k } = rot;
47 let DVec3 { x, y, z } = DVec3::ONE / scale;
48
49 let scalar = r*r + i*i + j*j + k*k;
50 let s = 2.0/(scalar*scalar);
51 let sx = s*x;
52 let sy = s*y;
53 let sz = s*z;
54 let a = x - sx*(j*j + k*k);
55 let b = sx*(i*j + k*r);
56 let c = sx*(i*k - j*r);
57 let d = sy*(i*j - k*r);
58 let e = y - sy*(i*i + k*k);
59 let f = sy*(j*k + i*r);
60 let g = sz*(i*k + j*r);
61 let h = sz*(j*k - i*r);
62 let i = z - sz*(i*i + j*j);
63 DMat4::from_values(
64 a, b, c, -a*pos.x - b*pos.y - c*pos.z,
65 d, e, f, -d*pos.x - e*pos.y - f*pos.z,
66 g, h, i, -g*pos.x - h*pos.y - i*pos.z,
67 0.0, 0.0, 0.0, 1.0
68 )
69 }
70 pub fn from_pos_and_rot(pos: DVec3, rot: DQuat) -> Self {
71 let (r, i, j, k) = (rot.r, rot.i, rot.j, rot.k);
72 DMat4::from_values(
73 1.0 - 2.0*(j*j + k*k), 2.0*(i*j - k*r), 2.0*(i*k + j*r), pos.x,
74 2.0*(i*j + k*r), 1.0 - 2.0*(i*i + k*k), 2.0*(j*k - i*r), pos.y,
75 2.0*(i*k - j*r), 2.0*(j*k + i*r), 1.0 - 2.0*(i*i + j*j), pos.z,
76 0.0, 0.0, 0.0, 1.0
77 )
78 }
79 pub const fn from_pos_and_scale(pos: DVec3, scale: DVec3) -> Self {
80 DMat4::from_values(
81 scale.x, 0.0, 0.0, pos.x,
82 0.0, scale.y, 0.0, pos.y,
83 0.0, 0.0, scale.z, pos.z,
84 0.0, 0.0, 0.0, 1.0
85 )
86 }
87 pub fn from_scale_and_rot(scale: DVec3, rot: DQuat) -> Self {
88 let (r, i, j, k) = (rot.r, rot.i, rot.j, rot.k);
89 let (sx, sy, sz) = (scale.x * 2.0, scale.y * 2.0, scale.z * 2.0);
90 DMat4::from_values(
91 sx*(0.5 - (j*j + k*k)), sy*(i*j - k*r), sz*(i*k + j*r), 0.0,
92 sx*(i*j + k*r), sy*(0.5 - (i*i + k*k)), sz*(j*k - i*r), 0.0,
93 sx*(i*k - j*r), sy*(j*k + i*r), sz*(0.5 - (i*i + j*j)), 0.0,
94 0.0, 0.0, 0.0, 1.0
95 )
96 }
97 pub const fn from_pos(pos: DVec3) -> Self {
98 let (x, y, z) = (pos.x, pos.y, pos.z);
99 DMat4::from_values(
100 1.0, 0.0, 0.0, x,
101 0.0, 1.0, 0.0, y,
102 0.0, 0.0, 1.0, z,
103 0.0, 0.0, 0.0, 1.0
104 )
105 }
106 pub fn from_rot(rot: DQuat) -> Self {
107 rot.into()
108 }
109 pub const fn transpose(self) -> Self {
111 let DMat4 { matrix: [
112 [a, e, i, m],
113 [b, f, j, n],
114 [c, g, k, o],
115 [d, h, l, p]
116 ] } = self;
117 DMat4::from_values(
118 a, e, i, m,
119 b, f, j, n,
120 c, g, k, o,
121 d, h, l, p
122 )
123 }
124 pub fn perspective_3d(window_dimesnsions: (u32, u32), fov: f64, zfar: f64, znear: f64) -> Self {
126 let (width, height) = window_dimesnsions;
127 let aspect_ratio = height as f64 / width as f64;
128 let f = 1.0 / (fov / 2.0).tan();
129 Self{
130 matrix: [
131 [f * aspect_ratio, 0.0, 0.0 , 0.0],
132 [ 0.0 , f , 0.0 , 0.0],
133 [ 0.0 , 0.0, (zfar+znear)/(zfar-znear) , 1.0],
134 [ 0.0 , 0.0, -(2.0*zfar*znear)/(zfar-znear), 0.0],
135 ]
136 }
137 }
138 pub fn perspective_2d(window_dimesnsions: (u32, u32)) -> Self {
140 let (width, height) = window_dimesnsions;
141 let aspect_ratio = height as f64 / width as f64;
142 DMat4::from_scale(dvec3(aspect_ratio, 1.0, 1.0))
143 }
144 #[allow(clippy::too_many_arguments)]
156 pub const fn from_values(
157 a: f64, b: f64, c: f64, d: f64,
158 e: f64, f: f64, g: f64, h: f64,
159 i: f64, j: f64, k: f64, l: f64,
160 m: f64, n: f64, o: f64, p: f64
161 ) -> Self {
162 Self{
163 matrix: [
165 [a, e, i, m],
166 [b, f, j, n],
167 [c, g, k, o],
168 [d, h, l, p]
169 ]
170 }
171 }
172 pub const fn column(&self, pos: usize) -> [f64; 4] {
173 self.matrix[pos]
174 }
175 pub const fn row(&self, pos: usize) -> [f64; 4] {
176 let matrix = self.matrix;
177 [matrix[0][pos], matrix[1][pos], matrix[2][pos], matrix[3][pos]]
178 }
179 pub fn position(&self) -> DVec3 {
180 dvec3(self[3][0], self[3][1], self[3][2])
181 }
182 pub fn determinant(self) -> f64 {
183 let a = self;
184 let s0 = a[0][0] * a[1][1] - a[1][0] * a[0][1];
185 let s1 = a[0][0] * a[1][2] - a[1][0] * a[0][2];
186 let s2 = a[0][0] * a[1][3] - a[1][0] * a[0][3];
187 let s3 = a[0][1] * a[1][2] - a[1][1] * a[0][2];
188 let s4 = a[0][1] * a[1][3] - a[1][1] * a[0][3];
189 let s5 = a[0][2] * a[1][3] - a[1][2] * a[0][3];
190
191 let c5 = a[2][2] * a[3][3] - a[3][2] * a[2][3];
192 let c4 = a[2][1] * a[3][3] - a[3][1] * a[2][3];
193 let c3 = a[2][1] * a[3][2] - a[3][1] * a[2][2];
194 let c2 = a[2][0] * a[3][3] - a[3][0] * a[2][3];
195 let c1 = a[2][0] * a[3][2] - a[3][0] * a[2][2];
196 let c0 = a[2][0] * a[3][1] - a[3][0] * a[2][1];
197
198 s0 * c5 - s1 * c4 + s2 * c3 + s3 * c2 - s4 * c1 + s5 * c0
199 }
200 pub fn inverse(self) -> Self {
202 let a = self;
203 let s0 = a[0][0] * a[1][1] - a[1][0] * a[0][1];
204 let s1 = a[0][0] * a[1][2] - a[1][0] * a[0][2];
205 let s2 = a[0][0] * a[1][3] - a[1][0] * a[0][3];
206 let s3 = a[0][1] * a[1][2] - a[1][1] * a[0][2];
207 let s4 = a[0][1] * a[1][3] - a[1][1] * a[0][3];
208 let s5 = a[0][2] * a[1][3] - a[1][2] * a[0][3];
209
210 let c5 = a[2][2] * a[3][3] - a[3][2] * a[2][3];
211 let c4 = a[2][1] * a[3][3] - a[3][1] * a[2][3];
212 let c3 = a[2][1] * a[3][2] - a[3][1] * a[2][2];
213 let c2 = a[2][0] * a[3][3] - a[3][0] * a[2][3];
214 let c1 = a[2][0] * a[3][2] - a[3][0] * a[2][2];
215 let c0 = a[2][0] * a[3][1] - a[3][0] * a[2][1];
216
217 let invdet = 1.0 / (s0 * c5 - s1 * c4 + s2 * c3 + s3 * c2 - s4 * c1 + s5 * c0);
218
219 let mut b = DMat4::IDENTITY;
220
221 b[0][0] = ( a[1][1] * c5 - a[1][2] * c4 + a[1][3] * c3) * invdet;
222 b[0][1] = (-a[0][1] * c5 + a[0][2] * c4 - a[0][3] * c3) * invdet;
223 b[0][2] = ( a[3][1] * s5 - a[3][2] * s4 + a[3][3] * s3) * invdet;
224 b[0][3] = (-a[2][1] * s5 + a[2][2] * s4 - a[2][3] * s3) * invdet;
225
226 b[1][0] = (-a[1][0] * c5 + a[1][2] * c2 - a[1][3] * c1) * invdet;
227 b[1][1] = ( a[0][0] * c5 - a[0][2] * c2 + a[0][3] * c1) * invdet;
228 b[1][2] = (-a[3][0] * s5 + a[3][2] * s2 - a[3][3] * s1) * invdet;
229 b[1][3] = ( a[2][0] * s5 - a[2][2] * s2 + a[2][3] * s1) * invdet;
230
231 b[2][0] = ( a[1][0] * c4 - a[1][1] * c2 + a[1][3] * c0) * invdet;
232 b[2][1] = (-a[0][0] * c4 + a[0][1] * c2 - a[0][3] * c0) * invdet;
233 b[2][2] = ( a[3][0] * s4 - a[3][1] * s2 + a[3][3] * s0) * invdet;
234 b[2][3] = (-a[2][0] * s4 + a[2][1] * s2 - a[2][3] * s0) * invdet;
235
236 b[3][0] = (-a[1][0] * c3 + a[1][1] * c1 - a[1][2] * c0) * invdet;
237 b[3][1] = ( a[0][0] * c3 - a[0][1] * c1 + a[0][2] * c0) * invdet;
238 b[3][2] = (-a[3][0] * s3 + a[3][1] * s1 - a[3][2] * s0) * invdet;
239 b[3][3] = ( a[2][0] * s3 - a[2][1] * s1 + a[2][2] * s0) * invdet;
240
241 b
242 }
243 pub fn scale(self, scalar: f64) -> DMat4 {
244 let DMat4 { matrix: [
245 [a, e, i, m],
246 [b, f, j, n],
247 [c, g, k, o],
248 [d, h, l, p]
249 ] } = self;
250 DMat4::from_values(
251 a*scalar, b*scalar, c*scalar, d*scalar,
252 e*scalar, f*scalar, g*scalar, h*scalar,
253 i*scalar, j*scalar, k*scalar, l*scalar,
254 m*scalar, n*scalar, o*scalar, p*scalar
255 )
256 }
257}
258impl Default for DMat4{
259 fn default() -> Self {
260 Self { matrix: [
261 [1.0, 0.0, 0.0, 0.0],
262 [0.0, 1.0, 0.0, 0.0],
263 [0.0, 0.0, 1.0, 0.0],
264 [0.0, 0.0, 0.0, 1.0],
265 ] }
266 }
267}
268impl std::ops::Mul<DVec4> for DMat4 {
269 fn mul(self, rhs: DVec4) -> Self::Output { rhs.transform(self) }
270 type Output = DVec4;
271}
272impl std::ops::Mul<DMat4> for f64 {
273 fn mul(self, rhs: DMat4) -> Self::Output { rhs * self }
274 type Output = DMat4;
275}
276impl std::ops::Mul<f64> for DMat4 {
277 fn mul(self, rhs: f64) -> Self::Output { self.scale(rhs) }
278 type Output = Self;
279}
280impl std::ops::MulAssign<f64> for DMat4 {
281 fn mul_assign(&mut self, rhs: f64) { *self = *self * rhs }
282}
283impl std::ops::Div<DMat4> for f64 {
284 fn div(self, rhs: DMat4) -> Self::Output {
285 let DMat4 { matrix: [
286 [a, e, i, m],
287 [b, f, j, n],
288 [c, g, k, o],
289 [d, h, l, p]
290 ] } = rhs;
291 DMat4::from_values(
292 self/a, self/b, self/c, self/d,
293 self/e, self/f, self/g, self/h,
294 self/i, self/j, self/k, self/l,
295 self/m, self/n, self/o, self/p
296 )
297 }
298 type Output = DMat4;
299}
300impl std::ops::Div<f64> for DMat4 {
301 fn div(self, rhs: f64) -> Self::Output { self.scale(1.0/rhs) }
302 type Output = Self;
303}
304impl std::ops::DivAssign<f64> for DMat4 {
305 fn div_assign(&mut self, rhs: f64) { *self = *self / rhs }
306}
307impl std::ops::Rem<DMat4> for f64 {
308 fn rem(self, rhs: DMat4) -> Self::Output {
309 let DMat4 { matrix: [
310 [a, e, i, m],
311 [b, f, j, n],
312 [c, g, k, o],
313 [d, h, l, p]
314 ] } = rhs;
315 DMat4::from_values(
316 self%a, self%b, self%c, self%d,
317 self%e, self%f, self%g, self%h,
318 self%i, self%j, self%k, self%l,
319 self%m, self%n, self%o, self%p
320 )
321 }
322 type Output = DMat4;
323}
324impl std::ops::Rem<f64> for DMat4 {
325 fn rem(self, rhs: f64) -> Self::Output {
326 let DMat4 { matrix: [
327 [a, e, i, m],
328 [b, f, j, n],
329 [c, g, k, o],
330 [d, h, l, p]
331 ] } = self;
332 DMat4::from_values(
333 a%rhs, b%rhs, c%rhs, d%rhs,
334 e%rhs, f%rhs, g%rhs, h%rhs,
335 i%rhs, j%rhs, k%rhs, l%rhs,
336 m%rhs, n%rhs, o%rhs, p%rhs
337 )
338 }
339 type Output = Self;
340}
341impl std::ops::RemAssign<f64> for DMat4 {
342 fn rem_assign(&mut self, rhs: f64) { *self = *self % rhs }
343}
344#[allow(clippy::needless_range_loop)] impl std::ops::Mul for DMat4{
346 fn mul(self, rhs: Self) -> Self::Output {
347 let mut matrix = [[0.0; 4]; 4];
348 for x in 0..4{
349 for y in 0..4{
350 matrix[x][y] = DVec4::dot(self.row(y).into(), rhs.column(x).into());
351 }
352 }
353 Self {
354 matrix
355 }
356 }
357 type Output = Self;
358}
359impl std::ops::MulAssign for DMat4 {
360 fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs }
361}
362#[allow(clippy::suspicious_arithmetic_impl)]
363impl std::ops::Div for DMat4 {
364 fn div(self, rhs: Self) -> Self::Output { self * rhs.inverse() }
365 type Output = Self;
366}
367impl std::ops::DivAssign for DMat4 {
368 fn div_assign(&mut self, rhs: Self) { *self = *self / rhs }
369}
370impl AsUniformValue for DMat4 {
371 fn as_uniform_value(&self) -> glium::uniforms::UniformValue<'_> {
372 glium::uniforms::UniformValue::DoubleMat4(self.matrix)
373 }
374}
375impl std::ops::Add for DMat4 {
376 fn add(self, rhs: Self) -> Self::Output {
377 let a = self.matrix;
378 let b = rhs.matrix;
379 Self{
380 matrix:[
381 [a[0][0] + b[0][0], a[0][1] + b[0][1], a[0][2] + b[0][2], a[0][3] + b[0][3]],
382 [a[1][0] + b[1][0], a[1][1] + b[1][1], a[1][2] + b[1][2], a[1][3] + b[1][3]],
383 [a[2][0] + b[2][0], a[2][1] + b[2][1], a[2][2] + b[2][2], a[2][3] + b[2][3]],
384 [a[3][0] + b[3][0], a[3][1] + b[3][1], a[3][2] + b[3][2], a[3][3] + b[3][3]],
385 ]
386 }
387 }
388 type Output = Self;
389}
390impl std::ops::AddAssign for DMat4 {
391 fn add_assign(&mut self, rhs: Self) {
392 *self = *self + rhs
393 }
394}
395impl std::ops::Sub for DMat4 {
396 fn sub(self, rhs: Self) -> Self::Output {
397 let a = self.matrix;
398 let b = rhs.matrix;
399 Self{
400 matrix:[
401 [a[0][0] - b[0][0], a[0][1] - b[0][1], a[0][2] - b[0][2], a[0][3] - b[0][3]],
402 [a[1][0] - b[1][0], a[1][1] - b[1][1], a[1][2] - b[1][2], a[1][3] - b[1][3]],
403 [a[2][0] - b[2][0], a[2][1] - b[2][1], a[2][2] - b[2][2], a[2][3] - b[2][3]],
404 [a[3][0] - b[3][0], a[3][1] - b[3][1], a[3][2] - b[3][2], a[3][3] - b[3][3]],
405 ]
406 }
407 }
408 type Output = Self;
409}
410impl std::ops::SubAssign for DMat4 {
411 fn sub_assign(&mut self, rhs: Self) {
412 *self = *self - rhs
413 }
414}
415impl From<DMat3> for DMat4 {
416 fn from(value: DMat3) -> Self {
417 Self::from_values(
418 value[0][0], value[0][1], value[0][2], 0.0,
419 value[1][0], value[1][1], value[1][2], 0.0,
420 value[2][0], value[2][1], value[2][2], 0.0,
421 0.0, 0.0, 0.0, 1.0
422 )
423 }
424}
425impl From<DMat2> for DMat4 {
426 fn from(value: DMat2) -> Self {
427 Self::from_values(
428 value[0][0], value[0][1], 0.0, 0.0,
429 value[1][0], value[1][1], 0.0, 0.0,
430 0.0, 0.0, 1.0, 0.0,
431 0.0, 0.0, 0.0, 1.0
432 )
433 }
434}
435impl From<DQuat> for DMat4 {
436 fn from(value: DQuat) -> DMat4 {
437 let DQuat { r, i, j, k } = value;
438 DMat4::from_values(
439 1.0 - 2.0*(j*j + k*k), 2.0*(i*j - k*r), 2.0*(i*k + j*r), 0.0,
440 2.0*(i*j + k*r), 1.0 - 2.0*(i*i + k*k), 2.0*(j*k - i*r), 0.0,
441 2.0*(i*k - j*r), 2.0*(j*k + i*r), 1.0 - 2.0*(i*i + j*j), 0.0,
442 0.0, 0.0, 0.0, 1.0
443 )
444 }
445}
446impl std::ops::Index<usize> for DMat4 {
447 fn index(&self, index: usize) -> &Self::Output {
448 &self.matrix[index]
449 }
450
451 type Output = [f64; 4];
452}
453impl std::ops::IndexMut<usize> for DMat4 {
454 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
455 &mut self.matrix[index]
456 }
457}
458#[test]
459fn test_from_inverse_transform() {
460 let rot = DQuat::from_x_rot(1.3);
461 let pos = dvec3(1.0, 2.0, 0.3);
462 let scale = dvec3(1.1, 2.0, 3.9);
463 let transform = DMat4::from_transform(pos, scale, rot);
464 let inv_transform = DMat4::from_inverse_transform(pos, scale, rot);
465 let result = transform * inv_transform;
466 assert!(eq_mats(DMat4::IDENTITY, result));
467}
468#[test]
469fn mat4_inverse() {
470 let rot = DQuat::from_x_rot(1.3);
471 let pos = dvec3(1.0, 2.0, 0.3);
472 let scale = dvec3(1.1, 2.0, 3.9);
473 let a = DMat4::from_transform(pos, scale, rot);
474 assert!(eq_mats(DMat4::IDENTITY, a.inverse() * a));
475}
476#[test]
477fn test_transform(){
478 let rot = DQuat::from_x_rot(1.3);
479 let pos = dvec3(1.0, 2.0, 0.3);
480 let scale = dvec3(1.1, 2.0, 3.9);
481 let transform = DMat4::from_transform(pos, scale, rot);
482 let result = DMat4::from_pos(pos) * DMat4::from_rot(rot) * DMat4::from_scale(scale);
483 assert!(eq_mats(transform, result))
484}
485#[allow(dead_code)]
486fn eq_mats(a: DMat4, b: DMat4) -> bool {
487 for x in 0..4 {
488 for y in 0..4 {
489 if f64::abs(a[x][y] - b[x][y]) > f64::EPSILON {
490 return false;
491 }
492 }
493 }
494 true
495}