1use glium::uniforms::AsUniformValue;
2
3use crate::{matrices::Mat3, prelude::{vec3, Vec4}, quaternions::Quat, vectors::Vec3};
4
5use super::Mat2;
6
7#[derive(Clone, Copy, PartialEq, Debug)]
8pub struct Mat4 {
10 matrix: [[f32; 4]; 4]
11}
12impl Mat4{
13 pub const IDENTITY: Self = Mat4::from_values(
14 1.0, 0.0, 0.0, 0.0,
15 0.0, 1.0, 0.0, 0.0,
16 0.0, 0.0, 1.0, 0.0,
17 0.0, 0.0, 0.0, 1.0
18 );
19 pub const fn from_column_major_array(array: [[f32; 4]; 4]) -> Self { Self { matrix: array } }
20 pub const fn into_column_major_array(self) -> [[f32; 4]; 4] { self.matrix }
21 pub const fn from_row_major_array(array: [[f32; 4]; 4]) -> Self { Self { matrix: array }.transpose() }
22 pub const fn into_row_major_array(self) -> [[f32; 4]; 4] { self.transpose().matrix }
23 pub const fn from_scale(scale: Vec3) -> Self{
24 let (x, y, z) = (scale.x, scale.y, scale.z);
25 Mat4::from_values(
26 x, 0.0, 0.0, 0.0,
27 0.0, y, 0.0, 0.0,
28 0.0, 0.0, z, 0.0,
29 0.0, 0.0, 0.0, 1.0
30 )
31 }
32 pub fn from_transform(pos: Vec3, scale: Vec3, rot: Quat) -> Self{
35 let Quat { r, i, j, k } = rot;
36 let (sx, sy, sz) = (scale.x * 2.0, scale.y * 2.0, scale.z * 2.0);
37 Mat4::from_values(
38 sx*(0.5 - (j*j + k*k)), sy*(i*j - k*r), sz*(i*k + j*r), pos.x,
39 sx*(i*j + k*r), sy*(0.5 - (i*i + k*k)), sz*(j*k - i*r), pos.y,
40 sx*(i*k - j*r), sy*(j*k + i*r), sz*(0.5 - (i*i + j*j)), pos.z,
41 0.0, 0.0, 0.0, 1.0
42 )
43 }
44 pub fn from_inverse_transform(pos: Vec3, scale: Vec3, rot: Quat) -> Self {
46 let Quat { r, i, j, k } = rot;
47 let Vec3 { x, y, z } = Vec3::ONE / scale;
48
49 let scalar = r*r + i*i + j*j + k*k;
50 let s = 2.0/(scalar*scalar);
51 let sx = s*x;
52 let sy = s*y;
53 let sz = s*z;
54 let a = x - sx*(j*j + k*k);
55 let b = sx*(i*j + k*r);
56 let c = sx*(i*k - j*r);
57 let d = sy*(i*j - k*r);
58 let e = y - sy*(i*i + k*k);
59 let f = sy*(j*k + i*r);
60 let g = sz*(i*k + j*r);
61 let h = sz*(j*k - i*r);
62 let i = z - sz*(i*i + j*j);
63 Mat4::from_values(
64 a, b, c, -a*pos.x - b*pos.y - c*pos.z,
65 d, e, f, -d*pos.x - e*pos.y - f*pos.z,
66 g, h, i, -g*pos.x - h*pos.y - i*pos.z,
67 0.0, 0.0, 0.0, 1.0
68 )
69 }
70 pub fn from_pos_and_rot(pos: Vec3, rot: Quat) -> Self{
71 let (r, i, j, k) = (rot.r, rot.i, rot.j, rot.k);
72 Mat4::from_values(
73 1.0 - 2.0*(j*j + k*k), 2.0*(i*j - k*r), 2.0*(i*k + j*r), pos.x,
74 2.0*(i*j + k*r), 1.0 - 2.0*(i*i + k*k), 2.0*(j*k - i*r), pos.y,
75 2.0*(i*k - j*r), 2.0*(j*k + i*r), 1.0 - 2.0*(i*i + j*j), pos.z,
76 0.0, 0.0, 0.0, 1.0
77 )
78 }
79 pub const fn from_pos_and_scale(pos: Vec3, scale: Vec3) -> Self{
80 Mat4::from_values(
81 scale.x, 0.0, 0.0, pos.x,
82 0.0, scale.y, 0.0, pos.y,
83 0.0, 0.0, scale.z, pos.z,
84 0.0, 0.0, 0.0, 1.0
85 )
86 }
87 pub fn from_scale_and_rot(scale: Vec3, rot: Quat) -> Self{
88 let (r, i, j, k) = (rot.r, rot.i, rot.j, rot.k);
89 let (sx, sy, sz) = (scale.x * 2.0, scale.y * 2.0, scale.z * 2.0);
90 Mat4::from_values(
91 sx*(0.5 - (j*j + k*k)), sy*(i*j - k*r), sz*(i*k + j*r), 0.0,
92 sx*(i*j + k*r), sy*(0.5 - (i*i + k*k)), sz*(j*k - i*r), 0.0,
93 sx*(i*k - j*r), sy*(j*k + i*r), sz*(0.5 - (i*i + j*j)), 0.0,
94 0.0, 0.0, 0.0, 1.0
95 )
96 }
97 pub const fn from_pos(pos: Vec3) -> Self{
98 let (x, y, z) = (pos.x, pos.y, pos.z);
99 Mat4::from_values(
100 1.0, 0.0, 0.0, x,
101 0.0, 1.0, 0.0, y,
102 0.0, 0.0, 1.0, z,
103 0.0, 0.0, 0.0, 1.0
104 )
105 }
106 pub fn from_rot(rot: Quat) -> Self{
107 rot.into()
108 }
109 pub const fn transpose(self) -> Self {
111 let Mat4 { matrix: [
112 [a, e, i, m],
113 [b, f, j, n],
114 [c, g, k, o],
115 [d, h, l, p]
116 ] } = self;
117 Mat4::from_values(
118 a, e, i, m,
119 b, f, j, n,
120 c, g, k, o,
121 d, h, l, p
122 )
123 }
124 pub fn perspective_3d(window_dimesnsions: (u32, u32), fov: f32, zfar: f32, znear: f32) -> Self {
126 let (width, height) = window_dimesnsions;
127 let aspect_ratio = height as f32 / width as f32;
128 let f = 1.0 / (fov / 2.0).tan();
129 Self { matrix: [
130 [f * aspect_ratio, 0.0, 0.0 , 0.0],
131 [ 0.0 , f , 0.0 , 0.0],
132 [ 0.0 , 0.0, (zfar+znear)/(zfar-znear) , 1.0],
133 [ 0.0 , 0.0, -(2.0*zfar*znear)/(zfar-znear), 0.0],
134 ] }
135 }
136 pub fn perspective_2d(window_dimesnsions: (u32, u32)) -> Self {
138 let (width, height) = window_dimesnsions;
139 let aspect_ratio = height as f32 / width as f32;
140 Mat4::from_scale(vec3(aspect_ratio, 1.0, 1.0))
141 }
142 #[allow(clippy::too_many_arguments)]
154 pub const fn from_values(
155 a: f32, b: f32, c: f32, d: f32,
156 e: f32, f: f32, g: f32, h: f32,
157 i: f32, j: f32, k: f32, l: f32,
158 m: f32, n: f32, o: f32, p: f32
159 ) -> Self{
160 Self{
161 matrix: [
163 [a, e, i, m],
164 [b, f, j, n],
165 [c, g, k, o],
166 [d, h, l, p]
167 ]
168 }
169 }
170 pub const fn column(&self, pos: usize) -> [f32; 4] {
171 self.matrix[pos]
172 }
173 pub const fn row(&self, pos: usize) -> [f32; 4] {
174 let matrix = self.matrix;
175 [matrix[0][pos], matrix[1][pos], matrix[2][pos], matrix[3][pos]]
176 }
177 pub fn position(&self) -> Vec3 {
178 vec3(self[3][0], self[3][1], self[3][2])
179 }
180 pub fn determinant(self) -> f32 {
181 let a = self;
182 let s0 = a[0][0] * a[1][1] - a[1][0] * a[0][1];
183 let s1 = a[0][0] * a[1][2] - a[1][0] * a[0][2];
184 let s2 = a[0][0] * a[1][3] - a[1][0] * a[0][3];
185 let s3 = a[0][1] * a[1][2] - a[1][1] * a[0][2];
186 let s4 = a[0][1] * a[1][3] - a[1][1] * a[0][3];
187 let s5 = a[0][2] * a[1][3] - a[1][2] * a[0][3];
188
189 let c5 = a[2][2] * a[3][3] - a[3][2] * a[2][3];
190 let c4 = a[2][1] * a[3][3] - a[3][1] * a[2][3];
191 let c3 = a[2][1] * a[3][2] - a[3][1] * a[2][2];
192 let c2 = a[2][0] * a[3][3] - a[3][0] * a[2][3];
193 let c1 = a[2][0] * a[3][2] - a[3][0] * a[2][2];
194 let c0 = a[2][0] * a[3][1] - a[3][0] * a[2][1];
195
196 s0 * c5 - s1 * c4 + s2 * c3 + s3 * c2 - s4 * c1 + s5 * c0
197 }
198 pub fn inverse(self) -> Self {
200 let a = self;
201 let s0 = a[0][0] * a[1][1] - a[1][0] * a[0][1];
202 let s1 = a[0][0] * a[1][2] - a[1][0] * a[0][2];
203 let s2 = a[0][0] * a[1][3] - a[1][0] * a[0][3];
204 let s3 = a[0][1] * a[1][2] - a[1][1] * a[0][2];
205 let s4 = a[0][1] * a[1][3] - a[1][1] * a[0][3];
206 let s5 = a[0][2] * a[1][3] - a[1][2] * a[0][3];
207
208 let c5 = a[2][2] * a[3][3] - a[3][2] * a[2][3];
209 let c4 = a[2][1] * a[3][3] - a[3][1] * a[2][3];
210 let c3 = a[2][1] * a[3][2] - a[3][1] * a[2][2];
211 let c2 = a[2][0] * a[3][3] - a[3][0] * a[2][3];
212 let c1 = a[2][0] * a[3][2] - a[3][0] * a[2][2];
213 let c0 = a[2][0] * a[3][1] - a[3][0] * a[2][1];
214
215 let invdet = 1.0 / (s0 * c5 - s1 * c4 + s2 * c3 + s3 * c2 - s4 * c1 + s5 * c0);
216
217 let mut b = Mat4::IDENTITY;
218
219 b[0][0] = ( a[1][1] * c5 - a[1][2] * c4 + a[1][3] * c3) * invdet;
220 b[0][1] = (-a[0][1] * c5 + a[0][2] * c4 - a[0][3] * c3) * invdet;
221 b[0][2] = ( a[3][1] * s5 - a[3][2] * s4 + a[3][3] * s3) * invdet;
222 b[0][3] = (-a[2][1] * s5 + a[2][2] * s4 - a[2][3] * s3) * invdet;
223
224 b[1][0] = (-a[1][0] * c5 + a[1][2] * c2 - a[1][3] * c1) * invdet;
225 b[1][1] = ( a[0][0] * c5 - a[0][2] * c2 + a[0][3] * c1) * invdet;
226 b[1][2] = (-a[3][0] * s5 + a[3][2] * s2 - a[3][3] * s1) * invdet;
227 b[1][3] = ( a[2][0] * s5 - a[2][2] * s2 + a[2][3] * s1) * invdet;
228
229 b[2][0] = ( a[1][0] * c4 - a[1][1] * c2 + a[1][3] * c0) * invdet;
230 b[2][1] = (-a[0][0] * c4 + a[0][1] * c2 - a[0][3] * c0) * invdet;
231 b[2][2] = ( a[3][0] * s4 - a[3][1] * s2 + a[3][3] * s0) * invdet;
232 b[2][3] = (-a[2][0] * s4 + a[2][1] * s2 - a[2][3] * s0) * invdet;
233
234 b[3][0] = (-a[1][0] * c3 + a[1][1] * c1 - a[1][2] * c0) * invdet;
235 b[3][1] = ( a[0][0] * c3 - a[0][1] * c1 + a[0][2] * c0) * invdet;
236 b[3][2] = (-a[3][0] * s3 + a[3][1] * s1 - a[3][2] * s0) * invdet;
237 b[3][3] = ( a[2][0] * s3 - a[2][1] * s1 + a[2][2] * s0) * invdet;
238
239 b
240 }
241 pub fn scale(self, scalar: f32) -> Mat4 {
242 let Mat4 { matrix: [
243 [a, e, i, m],
244 [b, f, j, n],
245 [c, g, k, o],
246 [d, h, l, p]
247 ] } = self;
248 Mat4::from_values(
249 a*scalar, b*scalar, c*scalar, d*scalar,
250 e*scalar, f*scalar, g*scalar, h*scalar,
251 i*scalar, j*scalar, k*scalar, l*scalar,
252 m*scalar, n*scalar, o*scalar, p*scalar
253 )
254 }
255}
256impl Default for Mat4{
257 fn default() -> Self {
258 Self { matrix: [
259 [1.0, 0.0, 0.0, 0.0],
260 [0.0, 1.0, 0.0, 0.0],
261 [0.0, 0.0, 1.0, 0.0],
262 [0.0, 0.0, 0.0, 1.0],
263 ] }
264 }
265}
266impl std::ops::Mul<Vec4> for Mat4 {
267 fn mul(self, rhs: Vec4) -> Self::Output { rhs.transform(self) }
268 type Output = Vec4;
269}
270impl std::ops::MulAssign<f32> for Mat4 {
271 fn mul_assign(&mut self, rhs: f32) { *self = *self * rhs }
272}
273impl std::ops::Mul<f32> for Mat4 {
274 fn mul(self, rhs: f32) -> Self::Output { self.scale(rhs) }
275 type Output = Self;
276}
277impl std::ops::Mul<Mat4> for f32 {
278 fn mul(self, rhs: Mat4) -> Self::Output { rhs * self }
279 type Output = Mat4;
280}
281impl std::ops::DivAssign<f32> for Mat4 {
282 fn div_assign(&mut self, rhs: f32) { *self = *self / rhs }
283}
284impl std::ops::Div<f32> for Mat4 {
285 fn div(self, rhs: f32) -> Self::Output { self.scale(1.0/rhs) }
286 type Output = Self;
287}
288impl std::ops::Div<Mat4> for f32 {
289 fn div(self, rhs: Mat4) -> Self::Output {
290 let Mat4 { matrix: [
291 [a, e, i, m],
292 [b, f, j, n],
293 [c, g, k, o],
294 [d, h, l, p]
295 ] } = rhs;
296 Mat4::from_values(
297 self/a, self/b, self/c, self/d,
298 self/e, self/f, self/g, self/h,
299 self/i, self/j, self/k, self/l,
300 self/m, self/n, self/o, self/p
301 )
302 }
303 type Output = Mat4;
304}
305impl std::ops::RemAssign<f32> for Mat4 {
306 fn rem_assign(&mut self, rhs: f32) { *self = *self % rhs }
307}
308impl std::ops::Rem<f32> for Mat4 {
309 fn rem(self, rhs: f32) -> Self::Output {
310 let Mat4 { matrix: [
311 [a, e, i, m],
312 [b, f, j, n],
313 [c, g, k, o],
314 [d, h, l, p]
315 ] } = self;
316 Mat4::from_values(
317 a%rhs, b%rhs, c%rhs, d%rhs,
318 e%rhs, f%rhs, g%rhs, h%rhs,
319 i%rhs, j%rhs, k%rhs, l%rhs,
320 m%rhs, n%rhs, o%rhs, p%rhs
321 )
322 }
323 type Output = Self;
324}
325impl std::ops::Rem<Mat4> for f32 {
326 fn rem(self, rhs: Mat4) -> Self::Output {
327 let Mat4 { matrix: [
328 [a, e, i, m],
329 [b, f, j, n],
330 [c, g, k, o],
331 [d, h, l, p]
332 ] } = rhs;
333 Mat4::from_values(
334 self%a, self%b, self%c, self%d,
335 self%e, self%f, self%g, self%h,
336 self%i, self%j, self%k, self%l,
337 self%m, self%n, self%o, self%p
338 )
339 }
340 type Output = Mat4;
341}
342#[allow(clippy::needless_range_loop)] impl std::ops::Mul for Mat4{
344 fn mul(self, rhs: Self) -> Self::Output {
345 let mut matrix = [[0.0; 4]; 4];
346 for x in 0..4{
347 for y in 0..4{
348 matrix[x][y] = Vec4::dot(self.row(y).into(), rhs.column(x).into());
349 }
350 }
351 Self {
352 matrix
353 }
354 }
355 type Output = Self;
356}
357impl std::ops::MulAssign for Mat4{
358 fn mul_assign(&mut self, rhs: Self) { *self = *self * rhs }
359}
360#[allow(clippy::suspicious_arithmetic_impl)]
361impl std::ops::Div for Mat4{
362 fn div(self, rhs: Self) -> Self::Output { self * rhs.inverse() }
363 type Output = Self;
364}
365impl std::ops::DivAssign for Mat4{
366 fn div_assign(&mut self, rhs: Self) { *self = *self / rhs }
367}
368impl AsUniformValue for Mat4{
369 fn as_uniform_value(&self) -> glium::uniforms::UniformValue<'_> {
370 glium::uniforms::UniformValue::Mat4(self.matrix)
371 }
372}
373impl std::ops::Add for Mat4{
374 fn add(self, rhs: Self) -> Self::Output {
375 let a = self.matrix;
376 let b = rhs.matrix;
377 Self{
378 matrix:[
379 [a[0][0] + b[0][0], a[0][1] + b[0][1], a[0][2] + b[0][2], a[0][3] + b[0][3]],
380 [a[1][0] + b[1][0], a[1][1] + b[1][1], a[1][2] + b[1][2], a[1][3] + b[1][3]],
381 [a[2][0] + b[2][0], a[2][1] + b[2][1], a[2][2] + b[2][2], a[2][3] + b[2][3]],
382 [a[3][0] + b[3][0], a[3][1] + b[3][1], a[3][2] + b[3][2], a[3][3] + b[3][3]],
383 ]
384 }
385 }
386 type Output = Self;
387}
388impl std::ops::AddAssign for Mat4{
389 fn add_assign(&mut self, rhs: Self) {
390 *self = *self + rhs
391 }
392}
393impl std::ops::Sub for Mat4{
394 fn sub(self, rhs: Self) -> Self::Output {
395 let a = self.matrix;
396 let b = rhs.matrix;
397 Self{
398 matrix:[
399 [a[0][0] - b[0][0], a[0][1] - b[0][1], a[0][2] - b[0][2], a[0][3] - b[0][3]],
400 [a[1][0] - b[1][0], a[1][1] - b[1][1], a[1][2] - b[1][2], a[1][3] - b[1][3]],
401 [a[2][0] - b[2][0], a[2][1] - b[2][1], a[2][2] - b[2][2], a[2][3] - b[2][3]],
402 [a[3][0] - b[3][0], a[3][1] - b[3][1], a[3][2] - b[3][2], a[3][3] - b[3][3]],
403 ]
404 }
405 }
406 type Output = Self;
407}
408impl std::ops::SubAssign for Mat4{
409 fn sub_assign(&mut self, rhs: Self) {
410 *self = *self - rhs
411 }
412}
413impl From<Mat3> for Mat4{
414 fn from(value: Mat3) -> Self {
415 Self::from_values(
416 value[0][0], value[0][1], value[0][2], 0.0,
417 value[1][0], value[1][1], value[1][2], 0.0,
418 value[2][0], value[2][1], value[2][2], 0.0,
419 0.0, 0.0, 0.0, 1.0
420 )
421 }
422}
423impl From<Mat2> for Mat4{
424 fn from(value: Mat2) -> Self {
425 Self::from_values(
426 value[0][0], value[0][1], 0.0, 0.0,
427 value[1][0], value[1][1], 0.0, 0.0,
428 0.0, 0.0, 1.0, 0.0,
429 0.0, 0.0, 0.0, 1.0
430 )
431 }
432}
433impl From<Quat> for Mat4 {
434 fn from(value: Quat) -> Mat4 {
435 let Quat { r, i, j, k } = value;
436 Mat4::from_values(
437 1.0 - 2.0*(j*j + k*k), 2.0*(i*j - k*r), 2.0*(i*k + j*r), 0.0,
438 2.0*(i*j + k*r), 1.0 - 2.0*(i*i + k*k), 2.0*(j*k - i*r), 0.0,
439 2.0*(i*k - j*r), 2.0*(j*k + i*r), 1.0 - 2.0*(i*i + j*j), 0.0,
440 0.0, 0.0, 0.0, 1.0
441 )
442 }
443}
444impl std::ops::Index<usize> for Mat4{
445 fn index(&self, index: usize) -> &Self::Output {
446 &self.matrix[index]
447 }
448
449 type Output = [f32; 4];
450}
451impl std::ops::IndexMut<usize> for Mat4{
452 fn index_mut(&mut self, index: usize) -> &mut Self::Output {
453 &mut self.matrix[index]
454 }
455}
456#[cfg(test)]
457mod tests {
458 use super::*;
459 #[test]
460 fn test_from_inverse_transform() {
461 let rot = Quat::from_x_rot(1.3);
462 let pos = vec3(1.0, 2.0, 0.3);
463 let scale = vec3(1.1, 2.0, 3.9);
464 let transform = Mat4::from_transform(pos, scale, rot);
465 let inv_transform = Mat4::from_inverse_transform(pos, scale, rot);
466 let result = transform * inv_transform;
467 assert!(eq_mats(Mat4::IDENTITY, result));
468 }
469 #[test]
470 fn mat4_inverse() {
471 let rot = Quat::from_x_rot(1.3);
472 let pos = vec3(1.0, 2.0, 0.3);
473 let scale = vec3(1.1, 2.0, 3.9);
474 let a = Mat4::from_transform(pos, scale, rot);
475 assert!(eq_mats(Mat4::IDENTITY, a.inverse() * a));
476 }
477 #[test]
478 fn test_transform(){
479 let rot = Quat::from_x_rot(1.3);
480 let pos = vec3(1.0, 2.0, 0.3);
481 let scale = vec3(1.1, 2.0, 3.9);
482 let transform = Mat4::from_transform(pos, scale, rot);
483 let result = Mat4::from_pos(pos) * Mat4::from_rot(rot) * Mat4::from_scale(scale);
484 assert!(eq_mats(transform, result))
485 }
486 fn eq_mats(a: Mat4, b: Mat4) -> bool {
487 for x in 0..4 {
488 for y in 0..4 {
489 if f32::abs(a[x][y] - b[x][y]) > f32::EPSILON {
490 return false;
491 }
492 }
493 }
494 true
495 }
496}