glam_ext/f64_ext/
isometry3a.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
use core::ops::{Mul, MulAssign};
use glam::{DAffine3, DMat3, DMat4, DQuat, DVec3};

#[repr(C)]
#[derive(Debug, Default, Clone, Copy, PartialEq)]
pub struct DIsometry3 {
    pub translation: DVec3,
    pub rotation: DQuat,
}

impl DIsometry3 {
    /// The degenerate zero isometry.
    ///
    /// This isometrys any finite vector and point to zero.
    /// The zero isometry is non-invertible.
    pub const ZERO: Self = Self {
        translation: DVec3::ZERO,
        rotation: DQuat::IDENTITY,
    };

    /// The identity isometry.
    ///
    /// Multiplying a vector with this returns the same vector.
    pub const IDENTITY: Self = Self {
        translation: DVec3::ZERO,
        rotation: DQuat::IDENTITY,
    };

    /// All NAN:s.
    pub const NAN: Self = Self {
        translation: DVec3::NAN,
        rotation: DQuat::NAN,
    };

    /// Creates a new isometry.
    #[inline]
    #[must_use]
    pub fn new(translation: DVec3, rotation: DQuat) -> Self {
        Self {
            translation,
            rotation,
        }
    }

    /// Creates a isometry isometry from the given `rotation` quaternion.
    #[inline]
    #[must_use]
    pub fn from_quat(rotation: DQuat) -> Self {
        Self {
            translation: DVec3::ZERO,
            rotation,
        }
    }

    /// Creates a isometry isometry containing a 3D rotation around a normalized
    /// rotation `axis` of `angle` (in radians).
    #[inline]
    #[must_use]
    pub fn from_axis_angle(axis: DVec3, angle: f64) -> Self {
        Self {
            translation: DVec3::ZERO,
            rotation: DQuat::from_axis_angle(axis, angle),
        }
    }

    /// Creates a isometry isometry containing a 3D rotation around the x axis of
    /// `angle` (in radians).
    #[inline]
    #[must_use]
    pub fn from_rotation_x(angle: f64) -> Self {
        Self {
            translation: DVec3::ZERO,
            rotation: DQuat::from_rotation_x(angle),
        }
    }

    /// Creates a isometry isometry containing a 3D rotation around the y axis of
    /// `angle` (in radians).
    #[inline]
    #[must_use]
    pub fn from_rotation_y(angle: f64) -> Self {
        Self {
            translation: DVec3::ZERO,
            rotation: DQuat::from_rotation_y(angle),
        }
    }

    /// Creates a isometry isometry containing a 3D rotation around the z axis of
    /// `angle` (in radians).
    #[inline]
    #[must_use]
    pub fn from_rotation_z(angle: f64) -> Self {
        Self {
            translation: DVec3::ZERO,
            rotation: DQuat::from_rotation_z(angle),
        }
    }

    /// Creates a isometry isometryation from the given 3D `translation`.
    #[inline]
    #[must_use]
    pub fn from_translation(translation: DVec3) -> Self {
        Self {
            translation,
            rotation: DQuat::IDENTITY,
        }
    }

    /// Creates a isometry from the given 3D `rotation` and `translation`.
    #[inline]
    #[must_use]
    pub fn from_rotation_translation(rotation: DQuat, translation: DVec3) -> Self {
        Self {
            translation,
            rotation,
        }
    }

    /// Creates a isometry from a 3x3 matrix (expressing scale and rotation)
    #[inline]
    #[must_use]
    pub fn from_mat3(mat3: DMat3) -> Self {
        Self {
            translation: DVec3::ZERO,
            rotation: DQuat::from_mat3(&mat3),
        }
    }

    /// Creates a isometry from a 3x3 matrix (expressing scale and rotation)
    #[inline]
    #[must_use]
    pub fn from_mat3_translation(mat3: DMat3, translation: DVec3) -> Self {
        Self {
            translation,
            rotation: DQuat::from_mat3(&mat3),
        }
    }

    /// Creates a isometry from a 4x4 matrix.
    #[inline]
    #[must_use]
    pub fn from_mat4(mat4: DMat4) -> Self {
        Self {
            translation: mat4.w_axis.truncate(),
            rotation: DQuat::from_mat4(&mat4),
        }
    }

    /// Extracts `scale`, `rotation` and `translation` from `self`.
    #[inline]
    #[must_use]
    pub fn to_rotation_translation(&self) -> (DQuat, DVec3) {
        (self.rotation, self.translation)
    }

    /// Transforms the given 3D points, applying rotation and translation.
    #[inline]
    #[must_use]
    pub fn transform_point3(&self, rhs: DVec3) -> DVec3 {
        let translation: DVec3 = self.translation;
        self.rotation * rhs + translation
    }

    /// Transforms the given 3D vector, applying rotation (but NOT translation).
    #[inline]
    #[must_use]
    pub fn transform_vector3(&self, rhs: DVec3) -> DVec3 {
        self.rotation * rhs
    }

    /// Returns `true` if, and only if, all elements are finite.
    ///
    /// If any element is either `NaN`, positive or negative infinity, this will return `false`.
    #[inline]
    #[must_use]
    pub fn is_finite(&self) -> bool {
        self.translation.is_finite() && self.rotation.is_finite()
    }

    /// Returns `true` if any elements are `NaN`.
    #[inline]
    #[must_use]
    pub fn is_nan(&self) -> bool {
        self.translation.is_nan() && self.rotation.is_nan()
    }

    /// Returns true if the absolute difference of all elements between `self` and `rhs`
    /// is less than or equal to `max_abs_diff`.
    #[inline]
    #[must_use]
    pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f64) -> bool {
        self.translation.abs_diff_eq(rhs.translation, max_abs_diff)
            && self.rotation.abs_diff_eq(rhs.rotation, max_abs_diff)
    }

    /// Return the inverse of this isometry.
    ///
    /// Note that if the isometry is not invertible the result will be invalid.
    #[inline]
    #[must_use]
    pub fn inverse(&self) -> Self {
        let rotation = self.rotation.inverse();
        Self {
            translation: -(rotation * self.translation),
            rotation,
        }
    }
}

impl From<DIsometry3> for DMat4 {
    #[inline]
    fn from(i: DIsometry3) -> DMat4 {
        let mat3 = DMat3::from_quat(i.rotation);
        DMat4::from_cols(
            mat3.x_axis.extend(0.0),
            mat3.y_axis.extend(0.0),
            mat3.z_axis.extend(0.0),
            i.translation.extend(1.0),
        )
    }
}

impl From<DIsometry3> for DAffine3 {
    #[inline]
    fn from(i: DIsometry3) -> DAffine3 {
        DAffine3::from_scale_rotation_translation(DVec3::ONE, i.rotation, i.translation)
    }
}

impl Mul for DIsometry3 {
    type Output = DIsometry3;

    #[inline]
    fn mul(self, rhs: DIsometry3) -> Self::Output {
        DIsometry3 {
            translation: self.rotation * rhs.translation + self.translation,
            rotation: self.rotation * rhs.rotation,
        }
    }
}

impl MulAssign for DIsometry3 {
    #[inline]
    fn mul_assign(&mut self, rhs: DIsometry3) {
        *self = self.mul(rhs);
    }
}

impl Mul<DMat4> for DIsometry3 {
    type Output = DMat4;

    #[inline]
    fn mul(self, rhs: DMat4) -> Self::Output {
        DMat4::from(self) * rhs
    }
}

impl Mul<DIsometry3> for DMat4 {
    type Output = DMat4;

    #[inline]
    fn mul(self, rhs: DIsometry3) -> Self::Output {
        self * DMat4::from(rhs)
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_from_mat4() {
        let rot = DQuat::from_rotation_y(0.6);
        let pos = DVec3::new(1.0, 2.0, 3.0);
        let mat = DMat4::from_rotation_translation(rot, pos);
        let is = DIsometry3::from_mat4(mat);
        assert!(DVec3::abs_diff_eq(is.translation, pos, 1e-6));
        assert!(DQuat::abs_diff_eq(is.rotation, rot, 1e-6));
    }

    #[test]
    fn test_transform_point3() {
        let rot = DQuat::from_rotation_x(0.6);
        let pos = DVec3::new(1.0, 2.0, 3.0);
        let mat = DMat4::from_rotation_translation(rot, pos);
        let is = DIsometry3::from_mat4(mat);

        let point = DVec3::new(5.0, -5.0, 5.0);
        let p1 = mat.project_point3(point);
        let p2 = is.transform_point3(point);
        assert!(DVec3::abs_diff_eq(p1, p2, 1e-6));
    }

    #[test]
    fn test_transform_vec3() {
        let rot = DQuat::from_rotation_z(-0.5);
        let pos = DVec3::new(1.5, -2.0, -2.0);
        let mat = DMat4::from_rotation_translation(rot, pos);
        let is = DIsometry3::from_mat4(mat);

        let vec = DVec3::new(1.0, 0.0, 0.7);
        let v1 = mat.transform_vector3(vec);
        let v2 = is.transform_vector3(vec);
        assert!(DVec3::abs_diff_eq(v1, v2, 1e-6));
    }

    #[test]
    fn test_inverse() {
        let rot = DQuat::from_rotation_z(1.5) * DQuat::from_rotation_x(1.0);
        let pos = DVec3::new(1.99, 0.77, -1.55);
        let mat = DMat4::from_rotation_translation(rot, pos);
        let mat_inv = mat.inverse();
        let is1 = DIsometry3::from_mat4(mat).inverse();
        let is2 = DIsometry3::from_mat4(mat_inv);
        assert!(DIsometry3::abs_diff_eq(is1, is2, 1e-6));
    }

    #[test]
    fn test_mat4_from() {
        let rot = DQuat::from_rotation_y(-2.0);
        let pos = DVec3::new(3.0, 3.3, 3.33);
        let mat = DMat4::from_rotation_translation(rot, pos);
        let is = DIsometry3::from_mat4(mat);
        let mat2 = DMat4::from(is);
        assert!(DMat4::abs_diff_eq(&mat, mat2, 1e-6));
    }

    #[test]
    fn test_isometry_mul() {
        let rot1 = DQuat::from_rotation_x(0.77);
        let pos1 = DVec3::new(6.6, -6.6, 3.3);
        let mat1 = DMat4::from_rotation_translation(rot1, pos1);
        let is1 = DIsometry3::from_rotation_translation(rot1, pos1);

        let rot2 = DQuat::from_rotation_z(-0.44);
        let pos2 = DVec3::new(-1.1, -2.2, -3.3);
        let mat2 = DMat4::from_rotation_translation(rot2, pos2);
        let is2 = DIsometry3::from_rotation_translation(rot2, pos2);

        let mat = mat1 * mat2;
        let is = is1 * is2;
        let is_mat = DIsometry3::from_mat4(mat);
        assert!(DIsometry3::abs_diff_eq(is, is_mat, 1e-6));
    }
}