use core::ops::{Mul, MulAssign};
use glam::{Affine3A, Mat3, Mat4, Quat, Vec3, Vec3A};
#[repr(C)]
#[derive(Debug, Default, Clone, Copy, PartialEq)]
pub struct Isometry3A {
pub translation: Vec3A,
pub rotation: Quat,
}
impl Isometry3A {
pub const ZERO: Self = Self {
translation: Vec3A::ZERO,
rotation: Quat::IDENTITY,
};
pub const IDENTITY: Self = Self {
translation: Vec3A::ZERO,
rotation: Quat::IDENTITY,
};
pub const NAN: Self = Self {
translation: Vec3A::NAN,
rotation: Quat::NAN,
};
#[inline]
#[must_use]
pub fn new(translation: Vec3, rotation: Quat) -> Self {
Self {
translation: translation.into(),
rotation,
}
}
#[inline]
#[must_use]
pub fn from_quat(rotation: Quat) -> Self {
Self {
translation: Vec3A::ZERO,
rotation,
}
}
#[inline]
#[must_use]
pub fn from_axis_angle(axis: Vec3, angle: f32) -> Self {
Self {
translation: Vec3A::ZERO,
rotation: Quat::from_axis_angle(axis, angle),
}
}
#[inline]
#[must_use]
pub fn from_rotation_x(angle: f32) -> Self {
Self {
translation: Vec3A::ZERO,
rotation: Quat::from_rotation_x(angle),
}
}
#[inline]
#[must_use]
pub fn from_rotation_y(angle: f32) -> Self {
Self {
translation: Vec3A::ZERO,
rotation: Quat::from_rotation_y(angle),
}
}
#[inline]
#[must_use]
pub fn from_rotation_z(angle: f32) -> Self {
Self {
translation: Vec3A::ZERO,
rotation: Quat::from_rotation_z(angle),
}
}
#[inline]
#[must_use]
pub fn from_translation(translation: Vec3) -> Self {
Self {
translation: translation.into(),
rotation: Quat::IDENTITY,
}
}
#[inline]
#[must_use]
pub fn from_rotation_translation(rotation: Quat, translation: Vec3) -> Self {
Self {
translation: translation.into(),
rotation,
}
}
#[inline]
#[must_use]
pub fn from_mat3(mat3: Mat3) -> Self {
Self {
translation: Vec3A::ZERO,
rotation: Quat::from_mat3(&mat3),
}
}
#[inline]
#[must_use]
pub fn from_mat3_translation(mat3: Mat3, translation: Vec3) -> Self {
Self {
translation: translation.into(),
rotation: Quat::from_mat3(&mat3),
}
}
#[inline]
#[must_use]
pub fn from_mat4(mat4: Mat4) -> Self {
Self {
translation: mat4.w_axis.truncate().into(),
rotation: Quat::from_mat4(&mat4),
}
}
#[inline]
#[must_use]
pub fn to_rotation_translation(&self) -> (Quat, Vec3) {
(self.rotation, self.translation.into())
}
#[inline]
#[must_use]
pub fn transform_point3(&self, rhs: Vec3) -> Vec3 {
let translation: Vec3 = self.translation.into();
self.rotation * rhs + translation
}
#[inline]
#[must_use]
pub fn transform_vector3(&self, rhs: Vec3) -> Vec3 {
self.rotation * rhs
}
#[inline]
#[must_use]
pub fn transform_point3a(&self, rhs: Vec3A) -> Vec3A {
self.rotation * rhs + self.translation
}
#[inline]
#[must_use]
pub fn transform_vector3a(&self, rhs: Vec3A) -> Vec3A {
self.rotation * rhs
}
#[inline]
#[must_use]
pub fn is_finite(&self) -> bool {
self.translation.is_finite() && self.rotation.is_finite()
}
#[inline]
#[must_use]
pub fn is_nan(&self) -> bool {
self.translation.is_nan() && self.rotation.is_nan()
}
#[inline]
#[must_use]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
self.translation.abs_diff_eq(rhs.translation, max_abs_diff)
&& self.rotation.abs_diff_eq(rhs.rotation, max_abs_diff)
}
#[inline]
#[must_use]
pub fn inverse(&self) -> Self {
let rotation = self.rotation.inverse();
Self {
translation: -(rotation * self.translation),
rotation,
}
}
}
impl From<Isometry3A> for Mat4 {
#[inline]
fn from(i: Isometry3A) -> Mat4 {
let mat3 = Mat3::from_quat(i.rotation);
Mat4::from_cols(
mat3.x_axis.extend(0.0),
mat3.y_axis.extend(0.0),
mat3.z_axis.extend(0.0),
i.translation.extend(1.0),
)
}
}
impl From<Isometry3A> for Affine3A {
#[inline]
fn from(i: Isometry3A) -> Affine3A {
Affine3A::from_scale_rotation_translation(Vec3::ONE, i.rotation, i.translation.into())
}
}
impl Mul for Isometry3A {
type Output = Isometry3A;
#[inline]
fn mul(self, rhs: Isometry3A) -> Self::Output {
Isometry3A {
translation: self.rotation * rhs.translation + self.translation,
rotation: self.rotation * rhs.rotation,
}
}
}
impl MulAssign for Isometry3A {
#[inline]
fn mul_assign(&mut self, rhs: Isometry3A) {
*self = self.mul(rhs);
}
}
impl Mul<Mat4> for Isometry3A {
type Output = Mat4;
#[inline]
fn mul(self, rhs: Mat4) -> Self::Output {
Mat4::from(self) * rhs
}
}
impl Mul<Isometry3A> for Mat4 {
type Output = Mat4;
#[inline]
fn mul(self, rhs: Isometry3A) -> Self::Output {
self * Mat4::from(rhs)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_from_mat4() {
let rot = Quat::from_rotation_y(0.6);
let pos = Vec3::new(1.0, 2.0, 3.0);
let mat = Mat4::from_rotation_translation(rot, pos);
let is = Isometry3A::from_mat4(mat);
assert!(Vec3::abs_diff_eq(is.translation.into(), pos, 1e-6));
assert!(Quat::abs_diff_eq(is.rotation, rot, 1e-6));
}
#[test]
fn test_transform_point3() {
let rot = Quat::from_rotation_x(0.6);
let pos = Vec3::new(1.0, 2.0, 3.0);
let mat = Mat4::from_rotation_translation(rot, pos);
let is = Isometry3A::from_mat4(mat);
let point = Vec3::new(5.0, -5.0, 5.0);
let p1 = mat.project_point3(point);
let p2 = is.transform_point3(point);
assert!(Vec3::abs_diff_eq(p1, p2, 1e-6));
let point = Vec3A::new(3.3, 4.4, 5.5);
let p1 = mat.project_point3a(point);
let p2 = is.transform_point3a(point);
assert!(Vec3A::abs_diff_eq(p1, p2, 1e-6));
}
#[test]
fn test_transform_vec3() {
let rot = Quat::from_rotation_z(-0.5);
let pos = Vec3::new(1.5, -2.0, -2.0);
let mat = Mat4::from_rotation_translation(rot, pos);
let is = Isometry3A::from_mat4(mat);
let vec = Vec3::new(1.0, 0.0, 0.7);
let v1 = mat.transform_vector3(vec);
let v2 = is.transform_vector3(vec);
assert!(Vec3::abs_diff_eq(v1, v2, 1e-6));
let vec = Vec3A::new(-0.5, 1.0, 0.0);
let v1 = mat.transform_vector3a(vec);
let v2 = is.transform_vector3a(vec);
assert!(Vec3A::abs_diff_eq(v1, v2, 1e-6));
}
#[test]
fn test_inverse() {
let rot = Quat::from_rotation_z(1.5) * Quat::from_rotation_x(1.0);
let pos = Vec3::new(1.99, 0.77, -1.55);
let mat = Mat4::from_rotation_translation(rot, pos);
let mat_inv = mat.inverse();
let is1 = Isometry3A::from_mat4(mat).inverse();
let is2 = Isometry3A::from_mat4(mat_inv);
assert!(Isometry3A::abs_diff_eq(is1, is2, 1e-6));
}
#[test]
fn test_mat4_from() {
let rot = Quat::from_rotation_y(-2.0);
let pos = Vec3::new(3.0, 3.3, 3.33);
let mat = Mat4::from_rotation_translation(rot, pos);
let is = Isometry3A::from_mat4(mat);
let mat2 = Mat4::from(is);
assert!(Mat4::abs_diff_eq(&mat, mat2, 1e-6));
}
#[test]
fn test_isometry_mul() {
let rot1 = Quat::from_rotation_x(0.77);
let pos1 = Vec3::new(6.6, -6.6, 3.3);
let mat1 = Mat4::from_rotation_translation(rot1, pos1);
let is1 = Isometry3A::from_rotation_translation(rot1, pos1);
let rot2 = Quat::from_rotation_z(-0.44);
let pos2 = Vec3::new(-1.1, -2.2, -3.3);
let mat2 = Mat4::from_rotation_translation(rot2, pos2);
let is2 = Isometry3A::from_rotation_translation(rot2, pos2);
let mat = mat1 * mat2;
let is = is1 * is2;
let is_mat = Isometry3A::from_mat4(mat);
assert!(Isometry3A::abs_diff_eq(is, is_mat, 1e-6));
}
}