Crate ghostflow_nn

Crate ghostflow_nn 

Source
Expand description

GhostFlow Neural Network Layers

High-level building blocks for neural networks.

Re-exports§

pub use module::Module;
pub use linear::Linear;
pub use conv::Conv1d;
pub use conv::Conv2d;
pub use conv::Conv3d;
pub use conv::TransposeConv2d;
pub use norm::BatchNorm1d;
pub use norm::BatchNorm2d;
pub use norm::LayerNorm;
pub use norm::GroupNorm;
pub use norm::InstanceNorm;
pub use dropout::Dropout;
pub use attention::MultiHeadAttention;
pub use attention::scaled_dot_product_attention;
pub use transformer::TransformerEncoder;
pub use transformer::TransformerEncoderLayer;
pub use transformer::TransformerDecoderLayer;
pub use transformer::FeedForward;
pub use transformer::PositionalEncoding;
pub use transformer::RotaryEmbedding;
pub use embedding::Embedding;
pub use rnn::LSTM;
pub use rnn::LSTMCell;
pub use rnn::GRU;
pub use rnn::GRUCell;
pub use quantization::QuantizedTensor;
pub use quantization::QuantizationConfig;
pub use quantization::QuantizationScheme;
pub use quantization::QuantizationAwareTraining;
pub use quantization::DynamicQuantization;
pub use distributed::DistributedConfig;
pub use distributed::DistributedBackend;
pub use distributed::DataParallel;
pub use distributed::ModelParallel;
pub use distributed::GradientAccumulator;
pub use distributed::DistributedDataParallel;
pub use distributed::PipelineParallel;
pub use serialization::ModelCheckpoint;
pub use serialization::ModelMetadata;
pub use serialization::save_model;
pub use serialization::load_model;
pub use gnn::Graph;
pub use gnn::GCNLayer;
pub use gnn::GATLayer;
pub use gnn::GraphSAGELayer;
pub use gnn::MPNNLayer;
pub use gnn::AggregatorType;
pub use rl::ReplayBuffer;
pub use rl::Experience;
pub use rl::DQNAgent;
pub use rl::QNetwork;
pub use rl::PolicyNetwork;
pub use rl::REINFORCEAgent;
pub use rl::ActorCriticAgent;
pub use rl::ValueNetwork;
pub use rl::PPOAgent;
pub use federated::FederatedClient;
pub use federated::FederatedServer;
pub use federated::AggregationStrategy;
pub use federated::SecureAggregation;
pub use federated::DifferentialPrivacy;
pub use onnx::ONNXModel;
pub use onnx::ONNXNode;
pub use onnx::ONNXTensor;
pub use onnx::ONNXDataType;
pub use onnx::ONNXAttribute;
pub use onnx::tensor_to_onnx;
pub use onnx::onnx_to_tensor;
pub use inference::InferenceConfig;
pub use inference::InferenceOptimizer;
pub use inference::InferenceSession;
pub use inference::BatchInference;
pub use inference::warmup_model;
pub use differential_privacy::DPConfig;
pub use differential_privacy::PrivacyAccountant;
pub use differential_privacy::DPSGDOptimizer;
pub use differential_privacy::PATEEnsemble;
pub use differential_privacy::LocalDP;
pub use adversarial::AttackConfig;
pub use adversarial::AttackType;
pub use adversarial::AdversarialAttack;
pub use adversarial::AdversarialTrainingConfig;
pub use adversarial::AdversarialTrainer;
pub use adversarial::RandomizedSmoothing;
pub use activation::*;
pub use loss::*;
pub use pooling::*;

Modules§

activation
Activation function modules
adversarial
Adversarial Training and Robustness
attention
Attention mechanisms
bert
BERT (Bidirectional Encoder Representations from Transformers)
clip
CLIP (Contrastive Language-Image Pre-training)
conv
Convolutional layers
curriculum_learning
Curriculum Learning
differential_privacy
Differential Privacy for Machine Learning
diffusion
Diffusion Models (Stable Diffusion, DDPM, DDIM)
distributed
Distributed Training
dropout
Dropout regularization
embedding
Embedding layers
federated
Federated Learning
flash_attention
Flash Attention
gnn
Graph Neural Networks (GNN) module
gpt
GPT (Generative Pre-trained Transformer)
gradient_checkpointing
Gradient Checkpointing
inference
Inference optimization utilities
init
Weight initialization strategies
knowledge_distillation
Knowledge Distillation
linear
Linear (fully connected) layer
llama
LLaMA (Large Language Model Meta AI)
lora
LoRA (Low-Rank Adaptation)
loss
Loss functions
mesh
Mesh Processing
mixed_precision
Mixed Precision Training
mixture_of_experts
Mixture of Experts (MoE)
module
Base Module trait for neural network layers
nerf
NeRF (Neural Radiance Fields)
norm
Normalization layers
onnx
ONNX export and import functionality
point_cloud
Point Cloud Processing
pooling
Pooling layers
prelude
Prelude for convenient imports
prompt_tuning
Prompt Tuning and Prefix Tuning
quantization
Model Quantization
ring_attention
Ring Attention
rl
Reinforcement Learning module
rnn
Recurrent Neural Network Layers
serialization
Model Serialization
t5
T5 (Text-to-Text Transfer Transformer)
transformer
Transformer architecture components
vision_transformer
Vision Transformer (ViT) Implementation
zero_optimizer
ZeRO Optimizer (Zero Redundancy Optimizer)