ghostflow_nn/
inference.rs

1//! Inference optimization utilities
2//!
3//! This module provides optimizations for model inference including:
4//! - Operator fusion
5//! - Constant folding
6//! - Memory optimization
7//! - Batch inference
8
9use ghostflow_core::{Result, Tensor, GhostError};
10use std::collections::HashMap;
11
12/// Inference mode configuration
13#[derive(Debug, Clone)]
14pub struct InferenceConfig {
15    /// Enable operator fusion
16    pub enable_fusion: bool,
17    /// Enable constant folding
18    pub enable_constant_folding: bool,
19    /// Batch size for inference
20    pub batch_size: usize,
21    /// Use mixed precision (FP16)
22    pub use_mixed_precision: bool,
23    /// Number of threads for CPU inference
24    pub num_threads: usize,
25}
26
27impl Default for InferenceConfig {
28    fn default() -> Self {
29        Self {
30            enable_fusion: true,
31            enable_constant_folding: true,
32            batch_size: 1,
33            use_mixed_precision: false,
34            num_threads: num_cpus::get(),
35        }
36    }
37}
38
39/// Inference optimizer
40pub struct InferenceOptimizer {
41    config: InferenceConfig,
42    fused_ops: Vec<FusedOp>,
43}
44
45/// Fused operation
46#[derive(Debug, Clone)]
47pub struct FusedOp {
48    pub name: String,
49    pub ops: Vec<String>,
50}
51
52impl InferenceOptimizer {
53    /// Create a new inference optimizer
54    pub fn new(config: InferenceConfig) -> Self {
55        Self {
56            config,
57            fused_ops: Vec::new(),
58        }
59    }
60
61    /// Optimize a model for inference
62    pub fn optimize(&mut self) -> Result<()> {
63        if self.config.enable_fusion {
64            self.fuse_operators()?;
65        }
66        
67        if self.config.enable_constant_folding {
68            self.fold_constants()?;
69        }
70        
71        Ok(())
72    }
73
74    /// Fuse common operator patterns
75    fn fuse_operators(&mut self) -> Result<()> {
76        // Conv + BatchNorm + ReLU fusion
77        self.fused_ops.push(FusedOp {
78            name: "ConvBNReLU".to_string(),
79            ops: vec!["Conv2d".to_string(), "BatchNorm".to_string(), "ReLU".to_string()],
80        });
81        
82        // Linear + ReLU fusion
83        self.fused_ops.push(FusedOp {
84            name: "LinearReLU".to_string(),
85            ops: vec!["Linear".to_string(), "ReLU".to_string()],
86        });
87        
88        // MatMul + Add fusion (GEMM)
89        self.fused_ops.push(FusedOp {
90            name: "GEMM".to_string(),
91            ops: vec!["MatMul".to_string(), "Add".to_string()],
92        });
93        
94        Ok(())
95    }
96
97    /// Fold constant operations
98    fn fold_constants(&mut self) -> Result<()> {
99        // Constant folding would pre-compute operations on constant tensors
100        // This is a placeholder for the actual implementation
101        Ok(())
102    }
103
104    /// Get fused operations
105    pub fn get_fused_ops(&self) -> &[FusedOp] {
106        &self.fused_ops
107    }
108}
109
110/// Batch inference helper
111pub struct BatchInference {
112    batch_size: usize,
113    buffer: Vec<Tensor>,
114}
115
116impl BatchInference {
117    /// Create a new batch inference helper
118    pub fn new(batch_size: usize) -> Self {
119        Self {
120            batch_size,
121            buffer: Vec::new(),
122        }
123    }
124
125    /// Add a sample to the batch
126    pub fn add(&mut self, sample: Tensor) {
127        self.buffer.push(sample);
128    }
129
130    /// Check if batch is ready
131    pub fn is_ready(&self) -> bool {
132        self.buffer.len() >= self.batch_size
133    }
134
135    /// Get the current batch and clear buffer
136    pub fn get_batch(&mut self) -> Result<Option<Tensor>> {
137        if !self.is_ready() {
138            return Ok(None);
139        }
140        
141        // Stack tensors into a batch
142        let batch = self.stack_tensors()?;
143        self.buffer.clear();
144        Ok(Some(batch))
145    }
146
147    /// Flush remaining samples (even if batch is not full)
148    pub fn flush(&mut self) -> Result<Option<Tensor>> {
149        if self.buffer.is_empty() {
150            return Ok(None);
151        }
152        
153        let batch = self.stack_tensors()?;
154        self.buffer.clear();
155        Ok(Some(batch))
156    }
157
158    fn stack_tensors(&self) -> Result<Tensor> {
159        if self.buffer.is_empty() {
160            return Err(GhostError::InvalidShape("Empty buffer".to_string()));
161        }
162        
163        let first_shape = self.buffer[0].dims();
164        let batch_size = self.buffer.len();
165        
166        // Create new shape with batch dimension
167        let mut new_shape = vec![batch_size];
168        new_shape.extend_from_slice(first_shape);
169        
170        // Collect all data
171        let mut all_data = Vec::new();
172        for tensor in &self.buffer {
173            all_data.extend(tensor.data_f32());
174        }
175        
176        Tensor::from_slice(&all_data, &new_shape)
177    }
178}
179
180/// Inference session for optimized model execution
181pub struct InferenceSession {
182    config: InferenceConfig,
183    optimizer: InferenceOptimizer,
184    cache: HashMap<String, Tensor>,
185}
186
187impl InferenceSession {
188    /// Create a new inference session
189    pub fn new(config: InferenceConfig) -> Self {
190        let optimizer = InferenceOptimizer::new(config.clone());
191        Self {
192            config,
193            optimizer,
194            cache: HashMap::new(),
195        }
196    }
197
198    /// Initialize the session
199    pub fn initialize(&mut self) -> Result<()> {
200        self.optimizer.optimize()?;
201        Ok(())
202    }
203
204    /// Run inference on a single input
205    pub fn run(&mut self, _input: &Tensor) -> Result<Tensor> {
206        // Placeholder for actual inference
207        // In a real implementation, this would execute the optimized model
208        Err(GhostError::NotImplemented("Inference execution not yet implemented".to_string()))
209    }
210
211    /// Run batch inference
212    pub fn run_batch(&mut self, _inputs: &[Tensor]) -> Result<Vec<Tensor>> {
213        // Placeholder for batch inference
214        Err(GhostError::NotImplemented("Batch inference not yet implemented".to_string()))
215    }
216
217    /// Cache a tensor for reuse
218    pub fn cache_tensor(&mut self, name: String, tensor: Tensor) {
219        self.cache.insert(name, tensor);
220    }
221
222    /// Get a cached tensor
223    pub fn get_cached(&self, name: &str) -> Option<&Tensor> {
224        self.cache.get(name)
225    }
226
227    /// Clear the cache
228    pub fn clear_cache(&mut self) {
229        self.cache.clear();
230    }
231
232    /// Get the configuration
233    pub fn config(&self) -> &InferenceConfig {
234        &self.config
235    }
236}
237
238/// Warmup helper for inference
239pub fn warmup_model<F>(mut inference_fn: F, input_shape: &[usize], num_iterations: usize) -> Result<f64>
240where
241    F: FnMut(&Tensor) -> Result<Tensor>,
242{
243    use std::time::Instant;
244    
245    // Create dummy input
246    let numel: usize = input_shape.iter().product();
247    let dummy_data = vec![0.0f32; numel];
248    let dummy_input = Tensor::from_slice(&dummy_data, input_shape)?;
249    
250    // Warmup iterations
251    for _ in 0..3 {
252        let _ = inference_fn(&dummy_input)?;
253    }
254    
255    // Timed iterations
256    let start = Instant::now();
257    for _ in 0..num_iterations {
258        let _ = inference_fn(&dummy_input)?;
259    }
260    let elapsed = start.elapsed();
261    
262    // Return average time in milliseconds
263    Ok(elapsed.as_secs_f64() * 1000.0 / num_iterations as f64)
264}
265
266#[cfg(test)]
267mod tests {
268    use super::*;
269
270    #[test]
271    fn test_inference_config() {
272        let config = InferenceConfig::default();
273        assert!(config.enable_fusion);
274        assert!(config.enable_constant_folding);
275        assert_eq!(config.batch_size, 1);
276    }
277
278    #[test]
279    fn test_inference_optimizer() {
280        let config = InferenceConfig::default();
281        let mut optimizer = InferenceOptimizer::new(config);
282        
283        optimizer.optimize().unwrap();
284        
285        let fused_ops = optimizer.get_fused_ops();
286        assert!(!fused_ops.is_empty());
287    }
288
289    #[test]
290    fn test_batch_inference() {
291        let mut batch = BatchInference::new(2);
292        
293        let t1 = Tensor::from_slice(&[1.0f32, 2.0], &[2]).unwrap();
294        let t2 = Tensor::from_slice(&[3.0f32, 4.0], &[2]).unwrap();
295        
296        batch.add(t1);
297        assert!(!batch.is_ready());
298        
299        batch.add(t2);
300        assert!(batch.is_ready());
301        
302        let batched = batch.get_batch().unwrap().unwrap();
303        assert_eq!(batched.dims(), &[2, 2]);
304    }
305
306    #[test]
307    fn test_batch_flush() {
308        let mut batch = BatchInference::new(3);
309        
310        let t1 = Tensor::from_slice(&[1.0f32, 2.0], &[2]).unwrap();
311        batch.add(t1);
312        
313        let flushed = batch.flush().unwrap().unwrap();
314        assert_eq!(flushed.dims(), &[1, 2]);
315    }
316
317    #[test]
318    fn test_inference_session() {
319        let config = InferenceConfig::default();
320        let mut session = InferenceSession::new(config);
321        
322        session.initialize().unwrap();
323        
324        // Test caching
325        let tensor = Tensor::from_slice(&[1.0f32, 2.0, 3.0], &[3]).unwrap();
326        session.cache_tensor("test".to_string(), tensor);
327        
328        assert!(session.get_cached("test").is_some());
329        
330        session.clear_cache();
331        assert!(session.get_cached("test").is_none());
332    }
333}
334