Crate ghostflow_nn

Crate ghostflow_nn 

Source
Expand description

GhostFlow Neural Network Layers

High-level building blocks for neural networks.

Re-exports§

pub use module::Module;
pub use linear::Linear;
pub use conv::Conv1d;
pub use conv::Conv2d;
pub use conv::Conv3d;
pub use conv::TransposeConv2d;
pub use norm::BatchNorm1d;
pub use norm::BatchNorm2d;
pub use norm::LayerNorm;
pub use norm::GroupNorm;
pub use norm::InstanceNorm;
pub use dropout::Dropout;
pub use attention::MultiHeadAttention;
pub use attention::scaled_dot_product_attention;
pub use transformer::TransformerEncoder;
pub use transformer::TransformerEncoderLayer;
pub use transformer::TransformerDecoderLayer;
pub use transformer::FeedForward;
pub use transformer::PositionalEncoding;
pub use transformer::RotaryEmbedding;
pub use embedding::Embedding;
pub use rnn::LSTM;
pub use rnn::LSTMCell;
pub use rnn::GRU;
pub use rnn::GRUCell;
pub use quantization::QuantizedTensor;
pub use quantization::QuantizationConfig;
pub use quantization::QuantizationScheme;
pub use quantization::QuantizationAwareTraining;
pub use quantization::DynamicQuantization;
pub use distributed::DistributedConfig;
pub use distributed::DistributedBackend;
pub use distributed::DataParallel;
pub use distributed::ModelParallel;
pub use distributed::GradientAccumulator;
pub use distributed::DistributedDataParallel;
pub use distributed::PipelineParallel;
pub use serialization::ModelCheckpoint;
pub use serialization::ModelMetadata;
pub use serialization::save_model;
pub use serialization::load_model;
pub use gnn::Graph;
pub use gnn::GCNLayer;
pub use gnn::GATLayer;
pub use gnn::GraphSAGELayer;
pub use gnn::MPNNLayer;
pub use gnn::AggregatorType;
pub use rl::ReplayBuffer;
pub use rl::Experience;
pub use rl::DQNAgent;
pub use rl::QNetwork;
pub use rl::PolicyNetwork;
pub use rl::REINFORCEAgent;
pub use rl::ActorCriticAgent;
pub use rl::ValueNetwork;
pub use rl::PPOAgent;
pub use federated::FederatedClient;
pub use federated::FederatedServer;
pub use federated::AggregationStrategy;
pub use federated::SecureAggregation;
pub use federated::DifferentialPrivacy;
pub use onnx::ONNXModel;
pub use onnx::ONNXNode;
pub use onnx::ONNXTensor;
pub use onnx::ONNXDataType;
pub use onnx::ONNXAttribute;
pub use onnx::tensor_to_onnx;
pub use onnx::onnx_to_tensor;
pub use inference::InferenceConfig;
pub use inference::InferenceOptimizer;
pub use inference::InferenceSession;
pub use inference::BatchInference;
pub use inference::warmup_model;
pub use differential_privacy::DPConfig;
pub use differential_privacy::PrivacyAccountant;
pub use differential_privacy::DPSGDOptimizer;
pub use differential_privacy::PATEEnsemble;
pub use differential_privacy::LocalDP;
pub use adversarial::AttackConfig;
pub use adversarial::AttackType;
pub use adversarial::AdversarialAttack;
pub use adversarial::AdversarialTrainingConfig;
pub use adversarial::AdversarialTrainer;
pub use adversarial::RandomizedSmoothing;
pub use activation::*;
pub use loss::*;
pub use pooling::*;

Modules§

activation
Activation function modules
adversarial
Adversarial Training and Robustness
attention
Attention mechanisms
conv
Convolutional layers
differential_privacy
Differential Privacy for Machine Learning
distributed
Distributed Training
dropout
Dropout regularization
embedding
Embedding layers
federated
Federated Learning
gnn
Graph Neural Networks (GNN) module
inference
Inference optimization utilities
init
Weight initialization strategies
linear
Linear (fully connected) layer
loss
Loss functions
module
Base Module trait for neural network layers
norm
Normalization layers
onnx
ONNX export and import functionality
pooling
Pooling layers
prelude
Prelude for convenient imports
quantization
Model Quantization
rl
Reinforcement Learning module
rnn
Recurrent Neural Network Layers
serialization
Model Serialization
transformer
Transformer architecture components