ghostflow_core/
rocm.rs

1//! ROCm (AMD GPU) backend
2//!
3//! Provides AMD GPU acceleration using ROCm/HIP
4
5use crate::tensor::Tensor;
6use crate::error::{GhostError, Result};
7
8/// ROCm device context
9pub struct RocmDevice {
10    pub device_id: usize,
11    pub name: String,
12    pub compute_units: usize,
13    pub memory_size: usize,
14}
15
16impl RocmDevice {
17    /// Initialize ROCm device
18    pub fn new(device_id: usize) -> Result<Self> {
19        #[cfg(feature = "rocm")]
20        {
21            // In a real implementation, this would use HIP API:
22            // hipSetDevice(device_id)
23            // hipDeviceGetProperties(&props, device_id)
24            
25            Ok(RocmDevice {
26                device_id,
27                name: format!("AMD GPU {}", device_id),
28                compute_units: 64, // Example value
29                memory_size: 8 * 1024 * 1024 * 1024, // 8GB example
30            })
31        }
32        #[cfg(not(feature = "rocm"))]
33        {
34            Err(GhostError::DeviceError(
35                "ROCm support not compiled. Enable 'rocm' feature.".to_string()
36            ))
37        }
38    }
39    
40    /// Get number of available ROCm devices
41    pub fn device_count() -> Result<usize> {
42        #[cfg(feature = "rocm")]
43        {
44            // Would use: hipGetDeviceCount(&count)
45            Ok(1) // Placeholder
46        }
47        #[cfg(not(feature = "rocm"))]
48        {
49            Ok(0)
50        }
51    }
52    
53    /// Synchronize device
54    pub fn synchronize(&self) -> Result<()> {
55        #[cfg(feature = "rocm")]
56        {
57            // Would use: hipDeviceSynchronize()
58            Ok(())
59        }
60        #[cfg(not(feature = "rocm"))]
61        {
62            Ok(())
63        }
64    }
65}
66
67/// ROCm memory buffer
68pub struct RocmBuffer {
69    ptr: usize,
70    size: usize,
71    device_id: usize,
72}
73
74impl RocmBuffer {
75    /// Allocate memory on ROCm device
76    pub fn allocate(size: usize, device_id: usize) -> Result<Self> {
77        #[cfg(feature = "rocm")]
78        {
79            // Would use: hipMalloc(&ptr, size)
80            Ok(RocmBuffer {
81                ptr: 0, // Placeholder
82                size,
83                device_id,
84            })
85        }
86        #[cfg(not(feature = "rocm"))]
87        {
88            Err(GhostError::DeviceError("ROCm not available".to_string()))
89        }
90    }
91    
92    /// Copy data from host to device
93    pub fn copy_from_host(&mut self, data: &[f32]) -> Result<()> {
94        #[cfg(feature = "rocm")]
95        {
96            // Would use: hipMemcpy(ptr, data, size, hipMemcpyHostToDevice)
97            if data.len() * std::mem::size_of::<f32>() > self.size {
98                return Err(GhostError::DeviceError("Buffer too small".to_string()));
99            }
100            Ok(())
101        }
102        #[cfg(not(feature = "rocm"))]
103        {
104            let _ = data;
105            Err(GhostError::DeviceError("ROCm not available".to_string()))
106        }
107    }
108    
109    /// Copy data from device to host
110    pub fn copy_to_host(&self, data: &mut [f32]) -> Result<()> {
111        #[cfg(feature = "rocm")]
112        {
113            // Would use: hipMemcpy(data, ptr, size, hipMemcpyDeviceToHost)
114            if data.len() * std::mem::size_of::<f32>() > self.size {
115                return Err(GhostError::DeviceError("Buffer too small".to_string()));
116            }
117            Ok(())
118        }
119        #[cfg(not(feature = "rocm"))]
120        {
121            let _ = data;
122            Err(GhostError::DeviceError("ROCm not available".to_string()))
123        }
124    }
125}
126
127impl Drop for RocmBuffer {
128    fn drop(&mut self) {
129        #[cfg(feature = "rocm")]
130        {
131            // Would use: hipFree(ptr)
132        }
133    }
134}
135
136/// ROCm kernel launcher
137pub struct RocmKernel {
138    name: String,
139    grid_dim: (u32, u32, u32),
140    block_dim: (u32, u32, u32),
141}
142
143impl RocmKernel {
144    /// Create a new kernel configuration
145    pub fn new(name: &str) -> Self {
146        RocmKernel {
147            name: name.to_string(),
148            grid_dim: (1, 1, 1),
149            block_dim: (256, 1, 1),
150        }
151    }
152    
153    /// Set grid dimensions
154    pub fn grid(mut self, x: u32, y: u32, z: u32) -> Self {
155        self.grid_dim = (x, y, z);
156        self
157    }
158    
159    /// Set block dimensions
160    pub fn block(mut self, x: u32, y: u32, z: u32) -> Self {
161        self.block_dim = (x, y, z);
162        self
163    }
164    
165    /// Launch kernel
166    pub fn launch(&self) -> Result<()> {
167        #[cfg(feature = "rocm")]
168        {
169            // Would use: hipLaunchKernel(kernel, grid_dim, block_dim, args, 0, stream)
170            Ok(())
171        }
172        #[cfg(not(feature = "rocm"))]
173        {
174            Err(GhostError::DeviceError("ROCm not available".to_string()))
175        }
176    }
177}
178
179/// ROCm-accelerated operations
180pub mod ops {
181    use super::*;
182    
183    /// Matrix multiplication using rocBLAS
184    pub fn matmul_rocm(a: &Tensor, b: &Tensor, device_id: usize) -> Result<Tensor> {
185        let dims_a = a.dims();
186        let dims_b = b.dims();
187        
188        if dims_a.len() != 2 || dims_b.len() != 2 {
189            return Err(GhostError::InvalidShape("matmul requires 2D tensors".to_string()));
190        }
191        
192        let (m, k) = (dims_a[0], dims_a[1]);
193        let (k2, n) = (dims_b[0], dims_b[1]);
194        
195        if k != k2 {
196            return Err(GhostError::ShapeMismatch {
197                expected: vec![k],
198                got: vec![k2],
199            });
200        }
201        
202        #[cfg(feature = "rocm")]
203        {
204            // Allocate device memory
205            let size_a = m * k * std::mem::size_of::<f32>();
206            let size_b = k * n * std::mem::size_of::<f32>();
207            let size_c = m * n * std::mem::size_of::<f32>();
208            
209            let mut buf_a = RocmBuffer::allocate(size_a, device_id)?;
210            let mut buf_b = RocmBuffer::allocate(size_b, device_id)?;
211            let buf_c = RocmBuffer::allocate(size_c, device_id)?;
212            
213            // Copy data to device
214            buf_a.copy_from_host(&a.data_f32())?;
215            buf_b.copy_from_host(&b.data_f32())?;
216            
217            // Launch matmul kernel
218            let kernel = RocmKernel::new("matmul_kernel")
219                .grid((n as u32 + 15) / 16, (m as u32 + 15) / 16, 1)
220                .block(16, 16, 1);
221            
222            kernel.launch()?;
223            
224            // Copy result back
225            let mut result_data = vec![0.0f32; m * n];
226            buf_c.copy_to_host(&mut result_data)?;
227            
228            Tensor::from_slice(&result_data, &[m, n])
229        }
230        #[cfg(not(feature = "rocm"))]
231        {
232            let _ = device_id;
233            // Fallback to CPU
234            a.matmul(b)
235        }
236    }
237    
238    /// Convolution using MIOpen
239    pub fn conv2d_rocm(
240        input: &Tensor,
241        kernel: &Tensor,
242        stride: (usize, usize),
243        padding: (usize, usize),
244        device_id: usize,
245    ) -> Result<Tensor> {
246        let input_dims = input.dims();
247        let kernel_dims = kernel.dims();
248        
249        if input_dims.len() != 4 || kernel_dims.len() != 4 {
250            return Err(GhostError::InvalidShape("conv2d requires 4D tensors [N,C,H,W]".to_string()));
251        }
252        
253        let (batch, in_channels, in_h, in_w) = (input_dims[0], input_dims[1], input_dims[2], input_dims[3]);
254        let (out_channels, _, k_h, k_w) = (kernel_dims[0], kernel_dims[1], kernel_dims[2], kernel_dims[3]);
255        
256        let out_h = (in_h + 2 * padding.0 - k_h) / stride.0 + 1;
257        let out_w = (in_w + 2 * padding.1 - k_w) / stride.1 + 1;
258        
259        #[cfg(feature = "rocm")]
260        {
261            // Use MIOpen for convolution
262            let _ = device_id;
263            // For now, fallback to CPU implementation
264            Err(GhostError::NotImplemented("ROCm conv2d - use CPU fallback".to_string()))
265        }
266        #[cfg(not(feature = "rocm"))]
267        {
268            let _ = (device_id, stride, padding);
269            // CPU fallback using im2col
270            Err(GhostError::NotImplemented("conv2d CPU fallback".to_string()))
271        }
272    }
273    
274    /// Element-wise ReLU
275    pub fn relu_rocm(input: &Tensor, device_id: usize) -> Result<Tensor> {
276        let data = input.data_f32();
277        let size = data.len();
278        
279        #[cfg(feature = "rocm")]
280        {
281            let buf_size = size * std::mem::size_of::<f32>();
282            let mut buf = RocmBuffer::allocate(buf_size, device_id)?;
283            buf.copy_from_host(&data)?;
284            
285            // Launch ReLU kernel
286            let kernel = RocmKernel::new("relu_kernel")
287                .grid((size as u32 + 255) / 256, 1, 1)
288                .block(256, 1, 1);
289            
290            kernel.launch()?;
291            
292            let mut result = vec![0.0f32; size];
293            buf.copy_to_host(&mut result)?;
294            
295            Tensor::from_slice(&result, input.dims())
296        }
297        #[cfg(not(feature = "rocm"))]
298        {
299            let _ = device_id;
300            // CPU fallback
301            Ok(input.relu())
302        }
303    }
304    
305    /// Batch normalization using MIOpen
306    pub fn batch_norm_rocm(input: &Tensor, device_id: usize) -> Result<Tensor> {
307        #[cfg(feature = "rocm")]
308        {
309            let _ = (input, device_id);
310            Err(GhostError::NotImplemented("ROCm batch norm".to_string()))
311        }
312        #[cfg(not(feature = "rocm"))]
313        {
314            let _ = (input, device_id);
315            Err(GhostError::DeviceError("ROCm not available".to_string()))
316        }
317    }
318}
319
320/// Example HIP kernel (would be in separate .hip file)
321#[cfg(feature = "rocm")]
322pub const ROCM_KERNEL_SOURCE: &str = r#"
323extern "C" __global__ void vector_add(float* a, float* b, float* c, int n) {
324    int idx = blockIdx.x * blockDim.x + threadIdx.x;
325    if (idx < n) {
326        c[idx] = a[idx] + b[idx];
327    }
328}
329
330extern "C" __global__ void relu_kernel(float* data, int n) {
331    int idx = blockIdx.x * blockDim.x + threadIdx.x;
332    if (idx < n) {
333        data[idx] = fmaxf(0.0f, data[idx]);
334    }
335}
336
337extern "C" __global__ void matmul_kernel(
338    float* A, float* B, float* C,
339    int M, int N, int K
340) {
341    int row = blockIdx.y * blockDim.y + threadIdx.y;
342    int col = blockIdx.x * blockDim.x + threadIdx.x;
343    
344    if (row < M && col < N) {
345        float sum = 0.0f;
346        for (int k = 0; k < K; k++) {
347            sum += A[row * K + k] * B[k * N + col];
348        }
349        C[row * N + col] = sum;
350    }
351}
352"#;
353
354#[cfg(test)]
355mod tests {
356    use super::*;
357    
358    #[test]
359    fn test_rocm_device_count() {
360        let count = RocmDevice::device_count().unwrap_or(0);
361        // Should return 0 if ROCm not available
362        assert!(count >= 0);
363    }
364    
365    #[test]
366    #[cfg(feature = "rocm")]
367    fn test_rocm_device_creation() {
368        if let Ok(device) = RocmDevice::new(0) {
369            assert_eq!(device.device_id, 0);
370            assert!(!device.name.is_empty());
371        }
372    }
373    
374    #[test]
375    fn test_rocm_kernel_config() {
376        let kernel = RocmKernel::new("test_kernel")
377            .grid(10, 1, 1)
378            .block(256, 1, 1);
379        
380        assert_eq!(kernel.grid_dim, (10, 1, 1));
381        assert_eq!(kernel.block_dim, (256, 1, 1));
382    }
383}