1use crate::tensor::Tensor;
7use crate::error::{GhostError, Result};
8
9pub struct TpuDevice {
11 pub device_id: usize,
12 pub name: String,
13 pub version: TpuVersion,
14 pub cores: usize,
15}
16
17#[derive(Debug, Clone, Copy, PartialEq, Eq)]
18pub enum TpuVersion {
19 V2,
20 V3,
21 V4,
22 V5,
23}
24
25impl TpuDevice {
26 pub fn new(device_id: usize) -> Result<Self> {
28 #[cfg(feature = "tpu")]
29 {
30 Ok(TpuDevice {
35 device_id,
36 name: format!("TPU Device {}", device_id),
37 version: TpuVersion::V4,
38 cores: 8, })
40 }
41 #[cfg(not(feature = "tpu"))]
42 {
43 Err(GhostError::DeviceError(
44 "TPU support not compiled. Enable 'tpu' feature.".to_string()
45 ))
46 }
47 }
48
49 pub fn device_count() -> Result<usize> {
51 #[cfg(feature = "tpu")]
52 {
53 Ok(0) }
56 #[cfg(not(feature = "tpu"))]
57 {
58 Ok(0)
59 }
60 }
61
62 pub fn memory_bandwidth(&self) -> f32 {
64 match self.version {
65 TpuVersion::V2 => 700.0,
66 TpuVersion::V3 => 900.0,
67 TpuVersion::V4 => 1200.0,
68 TpuVersion::V5 => 1600.0,
69 }
70 }
71
72 pub fn peak_tflops(&self) -> f32 {
74 match self.version {
75 TpuVersion::V2 => 45.0,
76 TpuVersion::V3 => 123.0,
77 TpuVersion::V4 => 275.0,
78 TpuVersion::V5 => 459.0,
79 }
80 }
81}
82
83pub struct TpuBuffer {
85 size: usize,
86 device_id: usize,
87}
88
89impl TpuBuffer {
90 pub fn allocate(size: usize, device_id: usize) -> Result<Self> {
92 #[cfg(feature = "tpu")]
93 {
94 Ok(TpuBuffer { size, device_id })
96 }
97 #[cfg(not(feature = "tpu"))]
98 {
99 let _ = (size, device_id);
100 Err(GhostError::DeviceError("TPU not available".to_string()))
101 }
102 }
103
104 pub fn copy_from_host(&mut self, data: &[f32]) -> Result<()> {
106 #[cfg(feature = "tpu")]
107 {
108 if data.len() * std::mem::size_of::<f32>() > self.size {
109 return Err(GhostError::DeviceError("Buffer too small".to_string()));
110 }
111 Ok(())
113 }
114 #[cfg(not(feature = "tpu"))]
115 {
116 let _ = data;
117 Err(GhostError::DeviceError("TPU not available".to_string()))
118 }
119 }
120
121 pub fn copy_to_host(&self, data: &mut [f32]) -> Result<()> {
123 #[cfg(feature = "tpu")]
124 {
125 if data.len() * std::mem::size_of::<f32>() > self.size {
126 return Err(GhostError::DeviceError("Buffer too small".to_string()));
127 }
128 Ok(())
129 }
130 #[cfg(not(feature = "tpu"))]
131 {
132 let _ = data;
133 Err(GhostError::DeviceError("TPU not available".to_string()))
134 }
135 }
136}
137
138pub mod xla {
140 use super::*;
141
142 pub struct XlaComputation {
144 name: String,
145 operations: Vec<XlaOp>,
146 }
147
148 #[derive(Debug, Clone)]
149 pub enum XlaOp {
150 MatMul { lhs: usize, rhs: usize },
151 Add { lhs: usize, rhs: usize },
152 Conv2D { input: usize, kernel: usize },
153 ReLU { input: usize },
154 }
155
156 impl XlaComputation {
157 pub fn new(name: &str) -> Self {
159 XlaComputation {
160 name: name.to_string(),
161 operations: Vec::new(),
162 }
163 }
164
165 pub fn add_op(&mut self, op: XlaOp) -> usize {
167 self.operations.push(op);
168 self.operations.len() - 1
169 }
170
171 pub fn compile(&self, device_id: usize) -> Result<CompiledXla> {
173 #[cfg(feature = "tpu")]
174 {
175 let _ = device_id;
181 Ok(CompiledXla {
182 name: self.name.clone(),
183 })
184 }
185 #[cfg(not(feature = "tpu"))]
186 {
187 let _ = device_id;
188 Err(GhostError::DeviceError("TPU not available".to_string()))
189 }
190 }
191 }
192
193 pub struct CompiledXla {
195 name: String,
196 }
197
198 impl CompiledXla {
199 pub fn execute(&self, inputs: &[Tensor]) -> Result<Vec<Tensor>> {
201 #[cfg(feature = "tpu")]
202 {
203 let _ = inputs;
205 Err(GhostError::NotImplemented("TPU execution".to_string()))
206 }
207 #[cfg(not(feature = "tpu"))]
208 {
209 let _ = inputs;
210 Err(GhostError::DeviceError("TPU not available".to_string()))
211 }
212 }
213 }
214}
215
216pub mod ops {
218 use super::*;
219
220 pub fn matmul_tpu(a: &Tensor, b: &Tensor, device_id: usize) -> Result<Tensor> {
222 let dims_a = a.dims();
223 let dims_b = b.dims();
224
225 if dims_a.len() != 2 || dims_b.len() != 2 {
226 return Err(GhostError::InvalidShape("matmul requires 2D tensors".to_string()));
227 }
228
229 let (m, k) = (dims_a[0], dims_a[1]);
230 let (k2, n) = (dims_b[0], dims_b[1]);
231
232 if k != k2 {
233 return Err(GhostError::ShapeMismatch {
234 expected: vec![k],
235 got: vec![k2],
236 });
237 }
238
239 #[cfg(feature = "tpu")]
240 {
241 let mut computation = xla::XlaComputation::new("matmul");
243 let input_a = 0;
244 let input_b = 1;
245 let matmul_op = xla::XlaOp::MatMul { lhs: input_a, rhs: input_b };
246 computation.add_op(matmul_op);
247
248 let compiled = computation.compile(device_id)?;
250
251 let inputs = vec![a.clone(), b.clone()];
253 let outputs = compiled.execute(&inputs)?;
254
255 if outputs.is_empty() {
256 return Err(GhostError::DeviceError("TPU execution failed".to_string()));
257 }
258
259 Ok(outputs[0].clone())
260 }
261 #[cfg(not(feature = "tpu"))]
262 {
263 let _ = device_id;
264 a.matmul(b)
266 }
267 }
268
269 pub fn conv2d_tpu(
271 input: &Tensor,
272 kernel: &Tensor,
273 stride: (usize, usize),
274 padding: (usize, usize),
275 device_id: usize,
276 ) -> Result<Tensor> {
277 #[cfg(feature = "tpu")]
278 {
279 let mut computation = xla::XlaComputation::new("conv2d");
281 let input_id = 0;
282 let kernel_id = 1;
283 let conv_op = xla::XlaOp::Conv2D { input: input_id, kernel: kernel_id };
284 computation.add_op(conv_op);
285
286 let compiled = computation.compile(device_id)?;
287 let inputs = vec![input.clone(), kernel.clone()];
288 let outputs = compiled.execute(&inputs)?;
289
290 if outputs.is_empty() {
291 return Err(GhostError::DeviceError("TPU execution failed".to_string()));
292 }
293
294 Ok(outputs[0].clone())
295 }
296 #[cfg(not(feature = "tpu"))]
297 {
298 let _ = (input, kernel, stride, padding, device_id);
299 Err(GhostError::DeviceError("TPU not available".to_string()))
300 }
301 }
302
303 pub fn batch_matmul_tpu(a: &Tensor, b: &Tensor, device_id: usize) -> Result<Tensor> {
305 let dims_a = a.dims();
306 let dims_b = b.dims();
307
308 if dims_a.len() != 3 || dims_b.len() != 3 {
309 return Err(GhostError::InvalidShape("batch_matmul requires 3D tensors [B,M,K] x [B,K,N]".to_string()));
310 }
311
312 let (batch, m, k) = (dims_a[0], dims_a[1], dims_a[2]);
313 let (batch2, k2, n) = (dims_b[0], dims_b[1], dims_b[2]);
314
315 if batch != batch2 || k != k2 {
316 return Err(GhostError::ShapeMismatch {
317 expected: vec![batch, k],
318 got: vec![batch2, k2],
319 });
320 }
321
322 #[cfg(feature = "tpu")]
323 {
324 let mut computation = xla::XlaComputation::new("batch_matmul");
326 let input_a = 0;
327 let input_b = 1;
328 let matmul_op = xla::XlaOp::MatMul { lhs: input_a, rhs: input_b };
329 computation.add_op(matmul_op);
330
331 let compiled = computation.compile(device_id)?;
332 let inputs = vec![a.clone(), b.clone()];
333 let outputs = compiled.execute(&inputs)?;
334
335 if outputs.is_empty() {
336 return Err(GhostError::DeviceError("TPU execution failed".to_string()));
337 }
338
339 Ok(outputs[0].clone())
340 }
341 #[cfg(not(feature = "tpu"))]
342 {
343 let _ = device_id;
344 let mut result_data = Vec::with_capacity(batch * m * n);
346 let a_data = a.data_f32();
347 let b_data = b.data_f32();
348
349 for b_idx in 0..batch {
350 let a_offset = b_idx * m * k;
351 let b_offset = b_idx * k * n;
352
353 for i in 0..m {
354 for j in 0..n {
355 let mut sum = 0.0;
356 for p in 0..k {
357 sum += a_data[a_offset + i * k + p] * b_data[b_offset + p * n + j];
358 }
359 result_data.push(sum);
360 }
361 }
362 }
363
364 Tensor::from_slice(&result_data, &[batch, m, n])
365 }
366 }
367
368 pub fn attention_tpu(
370 query: &Tensor,
371 key: &Tensor,
372 value: &Tensor,
373 device_id: usize,
374 ) -> Result<Tensor> {
375 #[cfg(feature = "tpu")]
376 {
377 let _ = (query, key, value, device_id);
379 Err(GhostError::NotImplemented("TPU attention - use CPU fallback".to_string()))
380 }
381 #[cfg(not(feature = "tpu"))]
382 {
383 let _ = (query, key, value, device_id);
384 let d_k = query.dims()[query.dims().len() - 1] as f32;
386 let key_t = key.t()?;
387 let scores = query.matmul(&key_t)?.div_scalar(d_k.sqrt());
388 let attn_weights = scores.softmax(-1);
389 attn_weights.matmul(value)
390 }
391 }
392}
393
394pub struct TpuPod {
396 pub num_chips: usize,
397 pub topology: PodTopology,
398}
399
400#[derive(Debug, Clone, Copy)]
401pub enum PodTopology {
402 Single,
404 Grid2x2,
406 Grid4x4,
408 Grid8x8,
410}
411
412impl TpuPod {
413 pub fn new(topology: PodTopology) -> Self {
415 let num_chips = match topology {
416 PodTopology::Single => 1,
417 PodTopology::Grid2x2 => 4,
418 PodTopology::Grid4x4 => 16,
419 PodTopology::Grid8x8 => 64,
420 };
421
422 TpuPod { num_chips, topology }
423 }
424
425 pub fn total_tflops(&self, version: TpuVersion) -> f32 {
427 let per_chip = match version {
428 TpuVersion::V2 => 45.0,
429 TpuVersion::V3 => 123.0,
430 TpuVersion::V4 => 275.0,
431 TpuVersion::V5 => 459.0,
432 };
433
434 per_chip * self.num_chips as f32
435 }
436}
437
438#[cfg(test)]
439mod tests {
440 use super::*;
441
442 #[test]
443 fn test_tpu_device_count() {
444 let count = TpuDevice::device_count().unwrap_or(0);
445 assert!(count >= 0);
447 }
448
449 #[test]
450 fn test_tpu_pod() {
451 let pod = TpuPod::new(PodTopology::Grid2x2);
452 assert_eq!(pod.num_chips, 4);
453
454 let tflops = pod.total_tflops(TpuVersion::V4);
455 assert_eq!(tflops, 275.0 * 4.0);
456 }
457
458 #[test]
459 fn test_xla_computation() {
460 let mut comp = xla::XlaComputation::new("test");
461 let op_id = comp.add_op(xla::XlaOp::ReLU { input: 0 });
462 assert_eq!(op_id, 0);
463 }
464}