ghostflow_core/
metal.rs

1//! Metal backend for Apple Silicon
2//!
3//! Provides GPU acceleration on macOS/iOS using Metal
4
5use crate::tensor::Tensor;
6use crate::error::{GhostError, Result};
7
8/// Metal device context
9pub struct MetalDevice {
10    pub device_id: usize,
11    pub name: String,
12    pub is_low_power: bool,
13    pub supports_family_apple7: bool,
14}
15
16impl MetalDevice {
17    /// Initialize Metal device
18    pub fn new(device_id: usize) -> Result<Self> {
19        #[cfg(feature = "metal")]
20        {
21            // Would use Metal API:
22            // let device = MTLCreateSystemDefaultDevice()
23            
24            Ok(MetalDevice {
25                device_id,
26                name: "Apple GPU".to_string(),
27                is_low_power: false,
28                supports_family_apple7: true,
29            })
30        }
31        #[cfg(not(feature = "metal"))]
32        {
33            Err(GhostError::DeviceError(
34                "Metal support not compiled. Enable 'metal' feature.".to_string()
35            ))
36        }
37    }
38    
39    /// Get number of available Metal devices
40    pub fn device_count() -> Result<usize> {
41        #[cfg(all(feature = "metal", target_os = "macos"))]
42        {
43            // Would use: MTLCopyAllDevices()
44            Ok(1) // Most Macs have 1 GPU
45        }
46        #[cfg(not(all(feature = "metal", target_os = "macos")))]
47        {
48            Ok(0)
49        }
50    }
51    
52    /// Check if device supports Neural Engine
53    pub fn supports_neural_engine(&self) -> bool {
54        #[cfg(feature = "metal")]
55        {
56            // Check for Apple Silicon
57            true // M1/M2/M3 have Neural Engine
58        }
59        #[cfg(not(feature = "metal"))]
60        {
61            false
62        }
63    }
64}
65
66/// Metal buffer for GPU memory
67pub struct MetalBuffer {
68    size: usize,
69    device_id: usize,
70}
71
72impl MetalBuffer {
73    /// Allocate Metal buffer
74    pub fn allocate(size: usize, device_id: usize) -> Result<Self> {
75        #[cfg(feature = "metal")]
76        {
77            // Would use: device.newBufferWithLength(size, options: .storageModeShared)
78            Ok(MetalBuffer { size, device_id })
79        }
80        #[cfg(not(feature = "metal"))]
81        {
82            let _ = (size, device_id);
83            Err(GhostError::DeviceError("Metal not available".to_string()))
84        }
85    }
86    
87    /// Copy data to buffer
88    pub fn copy_from_host(&mut self, data: &[f32]) -> Result<()> {
89        #[cfg(feature = "metal")]
90        {
91            // Would use: memcpy(buffer.contents(), data, size)
92            if data.len() * std::mem::size_of::<f32>() > self.size {
93                return Err(GhostError::DeviceError("Buffer too small".to_string()));
94            }
95            Ok(())
96        }
97        #[cfg(not(feature = "metal"))]
98        {
99            let _ = data;
100            Err(GhostError::DeviceError("Metal not available".to_string()))
101        }
102    }
103    
104    /// Copy data from buffer
105    pub fn copy_to_host(&self, data: &mut [f32]) -> Result<()> {
106        #[cfg(feature = "metal")]
107        {
108            // Would use: memcpy(data, buffer.contents(), size)
109            if data.len() * std::mem::size_of::<f32>() > self.size {
110                return Err(GhostError::DeviceError("Buffer too small".to_string()));
111            }
112            Ok(())
113        }
114        #[cfg(not(feature = "metal"))]
115        {
116            let _ = data;
117            Err(GhostError::DeviceError("Metal not available".to_string()))
118        }
119    }
120}
121
122/// Metal compute pipeline
123pub struct MetalPipeline {
124    name: String,
125    thread_group_size: (usize, usize, usize),
126}
127
128impl MetalPipeline {
129    /// Create a new compute pipeline
130    pub fn new(name: &str) -> Self {
131        MetalPipeline {
132            name: name.to_string(),
133            thread_group_size: (256, 1, 1),
134        }
135    }
136    
137    /// Set thread group size
138    pub fn thread_group_size(mut self, x: usize, y: usize, z: usize) -> Self {
139        self.thread_group_size = (x, y, z);
140        self
141    }
142    
143    /// Encode and dispatch compute command
144    pub fn dispatch(&self, grid_size: (usize, usize, usize)) -> Result<()> {
145        #[cfg(feature = "metal")]
146        {
147            // Would use:
148            // let commandBuffer = commandQueue.makeCommandBuffer()
149            // let encoder = commandBuffer.makeComputeCommandEncoder()
150            // encoder.setComputePipelineState(pipelineState)
151            // encoder.dispatchThreadgroups(...)
152            // encoder.endEncoding()
153            // commandBuffer.commit()
154            
155            let _ = grid_size;
156            Ok(())
157        }
158        #[cfg(not(feature = "metal"))]
159        {
160            let _ = grid_size;
161            Err(GhostError::DeviceError("Metal not available".to_string()))
162        }
163    }
164}
165
166/// Metal Performance Shaders (MPS) integration
167pub mod mps {
168    use super::*;
169    
170    /// Matrix multiplication using MPS
171    pub fn matmul_mps(a: &Tensor, b: &Tensor, device_id: usize) -> Result<Tensor> {
172        let dims_a = a.dims();
173        let dims_b = b.dims();
174        
175        if dims_a.len() != 2 || dims_b.len() != 2 {
176            return Err(GhostError::InvalidShape("matmul requires 2D tensors".to_string()));
177        }
178        
179        let (m, k) = (dims_a[0], dims_a[1]);
180        let (k2, n) = (dims_b[0], dims_b[1]);
181        
182        if k != k2 {
183            return Err(GhostError::ShapeMismatch {
184                expected: vec![k],
185                got: vec![k2],
186            });
187        }
188        
189        #[cfg(feature = "metal")]
190        {
191            // Allocate Metal buffers
192            let size_a = m * k * std::mem::size_of::<f32>();
193            let size_b = k * n * std::mem::size_of::<f32>();
194            let size_c = m * n * std::mem::size_of::<f32>();
195            
196            let mut buf_a = MetalBuffer::allocate(size_a, device_id)?;
197            let mut buf_b = MetalBuffer::allocate(size_b, device_id)?;
198            let buf_c = MetalBuffer::allocate(size_c, device_id)?;
199            
200            // Copy data to GPU
201            buf_a.copy_from_host(&a.data_f32())?;
202            buf_b.copy_from_host(&b.data_f32())?;
203            
204            // Create and dispatch compute pipeline
205            let pipeline = MetalPipeline::new("matmul_kernel")
206                .thread_group_size(16, 16, 1);
207            
208            let grid_x = (n + 15) / 16;
209            let grid_y = (m + 15) / 16;
210            pipeline.dispatch((grid_x, grid_y, 1))?;
211            
212            // Copy result back
213            let mut result_data = vec![0.0f32; m * n];
214            buf_c.copy_to_host(&mut result_data)?;
215            
216            Tensor::from_slice(&result_data, &[m, n])
217        }
218        #[cfg(not(feature = "metal"))]
219        {
220            let _ = device_id;
221            // Fallback to CPU with NEON if on ARM
222            #[cfg(target_arch = "aarch64")]
223            {
224                let a_data = a.data_f32();
225                let b_data = b.data_f32();
226                let mut result = vec![0.0f32; m * n];
227                crate::neon::matmul_neon(&a_data, &b_data, &mut result, m, n, k);
228                Tensor::from_slice(&result, &[m, n])
229            }
230            #[cfg(not(target_arch = "aarch64"))]
231            {
232                a.matmul(b)
233            }
234        }
235    }
236    
237    /// Convolution using MPSCNNConvolution
238    pub fn conv2d_mps(
239        input: &Tensor,
240        kernel: &Tensor,
241        stride: (usize, usize),
242        padding: (usize, usize),
243        device_id: usize,
244    ) -> Result<Tensor> {
245        let input_dims = input.dims();
246        let kernel_dims = kernel.dims();
247        
248        if input_dims.len() != 4 || kernel_dims.len() != 4 {
249            return Err(GhostError::InvalidShape("conv2d requires 4D tensors [N,C,H,W]".to_string()));
250        }
251        
252        #[cfg(feature = "metal")]
253        {
254            let _ = (input, kernel, stride, padding, device_id);
255            // MPS convolution would be implemented here
256            Err(GhostError::NotImplemented("Metal conv2d - use CPU fallback".to_string()))
257        }
258        #[cfg(not(feature = "metal"))]
259        {
260            let _ = (input, kernel, stride, padding, device_id);
261            Err(GhostError::DeviceError("Metal not available".to_string()))
262        }
263    }
264    
265    /// ReLU activation using MPSCNNNeuronReLU
266    pub fn relu_mps(input: &Tensor, device_id: usize) -> Result<Tensor> {
267        let data = input.data_f32();
268        let size = data.len();
269        
270        #[cfg(feature = "metal")]
271        {
272            let buf_size = size * std::mem::size_of::<f32>();
273            let mut buf = MetalBuffer::allocate(buf_size, device_id)?;
274            buf.copy_from_host(&data)?;
275            
276            // Create ReLU pipeline
277            let pipeline = MetalPipeline::new("relu_kernel")
278                .thread_group_size(256, 1, 1);
279            
280            let grid_size = (size + 255) / 256;
281            pipeline.dispatch((grid_size, 1, 1))?;
282            
283            let mut result = vec![0.0f32; size];
284            buf.copy_to_host(&mut result)?;
285            
286            Tensor::from_slice(&result, input.dims())
287        }
288        #[cfg(not(feature = "metal"))]
289        {
290            let _ = device_id;
291            // Fallback to NEON on ARM
292            #[cfg(target_arch = "aarch64")]
293            {
294                Ok(input.relu_neon())
295            }
296            #[cfg(not(target_arch = "aarch64"))]
297            {
298                Ok(input.relu())
299            }
300        }
301    }
302    
303    /// Batch normalization using MPSCNNBatchNormalization
304    pub fn batch_norm_mps(input: &Tensor, device_id: usize) -> Result<Tensor> {
305        #[cfg(feature = "metal")]
306        {
307            let _ = (input, device_id);
308            Err(GhostError::NotImplemented("Metal batch norm".to_string()))
309        }
310        #[cfg(not(feature = "metal"))]
311        {
312            let _ = (input, device_id);
313            Err(GhostError::DeviceError("Metal not available".to_string()))
314        }
315    }
316}
317
318/// Metal Shading Language (MSL) kernels
319#[cfg(feature = "metal")]
320pub const METAL_KERNEL_SOURCE: &str = r#"
321#include <metal_stdlib>
322using namespace metal;
323
324// Vector addition kernel
325kernel void vector_add(
326    device const float* a [[buffer(0)]],
327    device const float* b [[buffer(1)]],
328    device float* c [[buffer(2)]],
329    uint id [[thread_position_in_grid]]
330) {
331    c[id] = a[id] + b[id];
332}
333
334// ReLU activation kernel
335kernel void relu_kernel(
336    device float* data [[buffer(0)]],
337    uint id [[thread_position_in_grid]]
338) {
339    data[id] = max(0.0f, data[id]);
340}
341
342// Matrix multiplication kernel
343kernel void matmul_kernel(
344    device const float* A [[buffer(0)]],
345    device const float* B [[buffer(1)]],
346    device float* C [[buffer(2)]],
347    constant uint& M [[buffer(3)]],
348    constant uint& N [[buffer(4)]],
349    constant uint& K [[buffer(5)]],
350    uint2 gid [[thread_position_in_grid]]
351) {
352    uint row = gid.y;
353    uint col = gid.x;
354    
355    if (row < M && col < N) {
356        float sum = 0.0f;
357        for (uint k = 0; k < K; k++) {
358            sum += A[row * K + k] * B[k * N + col];
359        }
360        C[row * N + col] = sum;
361    }
362}
363
364// Softmax kernel
365kernel void softmax_kernel(
366    device const float* input [[buffer(0)]],
367    device float* output [[buffer(1)]],
368    constant uint& size [[buffer(2)]],
369    uint id [[thread_position_in_grid]]
370) {
371    // Find max for numerical stability
372    float max_val = input[0];
373    for (uint i = 1; i < size; i++) {
374        max_val = max(max_val, input[i]);
375    }
376    
377    // Compute exp and sum
378    float sum = 0.0f;
379    for (uint i = 0; i < size; i++) {
380        sum += exp(input[i] - max_val);
381    }
382    
383    // Normalize
384    output[id] = exp(input[id] - max_val) / sum;
385}
386"#;
387
388/// Neural Engine integration (for Apple Silicon)
389#[cfg(feature = "metal")]
390pub mod neural_engine {
391    use super::*;
392    
393    /// Check if Neural Engine is available
394    pub fn is_available() -> bool {
395        // Check for Apple Silicon (M1/M2/M3)
396        #[cfg(target_arch = "aarch64")]
397        {
398            true
399        }
400        #[cfg(not(target_arch = "aarch64"))]
401        {
402            false
403        }
404    }
405    
406    /// Run inference on Neural Engine
407    pub fn run_inference(model: &str, input: &Tensor) -> Result<Tensor> {
408        if !is_available() {
409            return Err(GhostError::DeviceError("Neural Engine not available".to_string()));
410        }
411        
412        // Would use Core ML with ANE:
413        // let mlModel = try MLModel(contentsOf: modelURL)
414        // let prediction = try mlModel.prediction(from: input)
415        
416        let _ = (model, input);
417        Err(GhostError::NotImplemented("Neural Engine inference".to_string()))
418    }
419}
420
421#[cfg(test)]
422mod tests {
423    use super::*;
424    
425    #[test]
426    fn test_metal_device_count() {
427        let count = MetalDevice::device_count().unwrap_or(0);
428        // Should return 0 if not on macOS or Metal not available
429        assert!(count >= 0);
430    }
431    
432    #[test]
433    #[cfg(all(feature = "metal", target_os = "macos"))]
434    fn test_metal_device_creation() {
435        if let Ok(device) = MetalDevice::new(0) {
436            assert_eq!(device.device_id, 0);
437            assert!(!device.name.is_empty());
438        }
439    }
440    
441    #[test]
442    fn test_metal_pipeline() {
443        let pipeline = MetalPipeline::new("test_kernel")
444            .thread_group_size(256, 1, 1);
445        
446        assert_eq!(pipeline.thread_group_size, (256, 1, 1));
447    }
448    
449    #[test]
450    #[cfg(feature = "metal")]
451    fn test_neural_engine_availability() {
452        let available = neural_engine::is_available();
453        // Should be true on Apple Silicon
454        #[cfg(target_arch = "aarch64")]
455        assert!(available);
456    }
457}