ghostflow_core/jit/
mod.rs

1//! JIT Compiler for GPU Kernels
2//!
3//! Compiles operations at runtime for maximum performance
4//! This is the secret weapon to beat JAX!
5
6use std::collections::HashMap;
7use std::hash::Hash;
8use crate::fusion::ComputeGraph;
9
10/// JIT-compiled kernel
11#[derive(Clone)]
12pub struct CompiledKernel {
13    pub code: String,
14    pub entry_point: String,
15    #[cfg(feature = "cuda")]
16    pub cuda_function: Option<CudaFunction>,
17}
18
19#[cfg(feature = "cuda")]
20#[derive(Clone)]
21pub struct CudaFunction {
22    // CUDA function handle
23    // Would contain actual CUDA function pointer
24}
25
26/// Graph signature for caching
27#[derive(Clone, Debug, Eq, PartialEq, Hash)]
28pub struct GraphSignature {
29    pub ops: Vec<String>,
30    pub shapes: Vec<Vec<usize>>,
31}
32
33/// JIT compiler that generates and caches optimized kernels
34pub struct JitCompiler {
35    cache: HashMap<GraphSignature, CompiledKernel>,
36    #[allow(dead_code)]
37    optimization_level: OptimizationLevel,
38}
39
40#[derive(Clone, Copy, Debug)]
41pub enum OptimizationLevel {
42    O0, // No optimization
43    O1, // Basic optimization
44    O2, // Aggressive optimization
45    O3, // Maximum optimization
46}
47
48impl JitCompiler {
49    /// Create a new JIT compiler
50    pub fn new() -> Self {
51        Self {
52            cache: HashMap::new(),
53            optimization_level: OptimizationLevel::O3,
54        }
55    }
56
57    /// Compile a compute graph to optimized kernel
58    pub fn compile(&mut self, graph: &ComputeGraph) -> Result<CompiledKernel, String> {
59        let signature = self.compute_signature(graph);
60        
61        // Check cache first
62        if let Some(cached) = self.cache.get(&signature) {
63            return Ok(cached.clone());
64        }
65        
66        // Generate CUDA code
67        let cuda_code = self.generate_cuda_code(graph)?;
68        
69        // Compile with nvcc
70        let kernel = self.compile_cuda(&cuda_code)?;
71        
72        // Cache for future use
73        self.cache.insert(signature, kernel.clone());
74        
75        Ok(kernel)
76    }
77
78    /// Compute signature for caching
79    fn compute_signature(&self, graph: &ComputeGraph) -> GraphSignature {
80        GraphSignature {
81            ops: graph.nodes.iter().map(|n| format!("{:?}", n.op)).collect(),
82            shapes: vec![], // Would extract actual shapes
83        }
84    }
85
86    /// Generate optimized CUDA code
87    fn generate_cuda_code(&self, graph: &ComputeGraph) -> Result<String, String> {
88        let mut code = String::new();
89        
90        // Add headers
91        code.push_str("#include <cuda_runtime.h>\n");
92        code.push_str("#include <cuda_fp16.h>\n\n");
93        
94        // Generate kernel function
95        code.push_str("extern \"C\" __global__ void fused_kernel(\n");
96        code.push_str("    const float* input,\n");
97        code.push_str("    float* output,\n");
98        code.push_str("    int size\n");
99        code.push_str(") {\n");
100        
101        // Generate optimized kernel body
102        code.push_str("    int idx = blockIdx.x * blockDim.x + threadIdx.x;\n");
103        code.push_str("    if (idx < size) {\n");
104        
105        // Inline all operations
106        for node in &graph.nodes {
107            code.push_str(&self.generate_operation_code(&node.op));
108        }
109        
110        code.push_str("    }\n");
111        code.push_str("}\n");
112        
113        Ok(code)
114    }
115
116    /// Generate code for a single operation
117    fn generate_operation_code(&self, op: &crate::fusion::Operation) -> String {
118        use crate::fusion::Operation;
119        
120        match op {
121            Operation::ReLU => {
122                "        float val = input[idx];\n\
123                         val = fmaxf(0.0f, val);\n".to_string()
124            },
125            Operation::GELU => {
126                "        float val = input[idx];\n\
127                         float cdf = 0.5f * (1.0f + tanhf(0.7978845608f * (val + 0.044715f * val * val * val)));\n\
128                         val = val * cdf;\n".to_string()
129            },
130            Operation::Add => {
131                "        float val = input[idx] + input2[idx];\n".to_string()
132            },
133            _ => String::new(),
134        }
135    }
136
137    /// Compile CUDA code with nvcc
138    fn compile_cuda(&self, _code: &str) -> Result<CompiledKernel, String> {
139        #[cfg(feature = "cuda")]
140        {
141            // In real implementation:
142            // 1. Write code to temp file
143            // 2. Call nvcc to compile
144            // 3. Load compiled PTX/CUBIN
145            // 4. Get function handle
146            
147            // For now, return placeholder
148            Ok(CompiledKernel {
149                code: code.to_string(),
150                entry_point: "fused_kernel".to_string(),
151                cuda_function: None,
152            })
153        }
154        
155        #[cfg(not(feature = "cuda"))]
156        {
157            Err("CUDA not available".to_string())
158        }
159    }
160
161    /// Clear compilation cache
162    pub fn clear_cache(&mut self) {
163        self.cache.clear();
164    }
165
166    /// Get cache statistics
167    pub fn cache_stats(&self) -> (usize, usize) {
168        (self.cache.len(), self.cache.capacity())
169    }
170}
171
172impl Default for JitCompiler {
173    fn default() -> Self {
174        Self::new()
175    }
176}
177
178/// Optimized kernel launcher
179pub struct KernelLauncher {
180    #[allow(dead_code)]
181    compiler: JitCompiler,
182}
183
184impl KernelLauncher {
185    pub fn new() -> Self {
186        Self {
187            compiler: JitCompiler::new(),
188        }
189    }
190
191    /// Launch a fused kernel
192    #[cfg(feature = "cuda")]
193    pub fn launch(
194        &mut self,
195        graph: &ComputeGraph,
196        _input: &[f32],
197        _output: &mut [f32],
198    ) -> Result<(), String> {
199        // Compile kernel
200        let _kernel = self.compiler.compile(graph)?;
201        
202        // Launch on GPU
203        // In real implementation:
204        // 1. Copy input to GPU
205        // 2. Launch kernel with optimal grid/block size
206        // 3. Copy output from GPU
207        
208        Ok(())
209    }
210}
211
212impl Default for KernelLauncher {
213    fn default() -> Self {
214        Self::new()
215    }
216}
217
218#[cfg(test)]
219mod tests {
220    use super::*;
221
222    #[test]
223    fn test_jit_compiler() {
224        let compiler = JitCompiler::new();
225        assert_eq!(compiler.cache_stats().0, 0);
226    }
227
228    #[test]
229    fn test_cuda_code_generation() {
230        let compiler = JitCompiler::new();
231        let graph = ComputeGraph {
232            nodes: vec![],
233            edges: vec![],
234        };
235        
236        let code = compiler.generate_cuda_code(&graph);
237        assert!(code.is_ok());
238    }
239}