Expand description
GhostFlow Core - High-performance tensor operations
This crate provides the foundational tensor type and operations for the GhostFlow ML framework.
§Phase 4 Optimizations (Beat JAX!)
- Operation fusion engine
- JIT compilation
- Memory layout optimization
- Custom optimized kernels
Re-exports§
pub use dtype::DType;pub use shape::Shape;pub use shape::Strides;pub use storage::Storage;pub use tensor::Tensor;pub use device::Device;pub use device::Cpu;pub use error::GhostError;pub use error::Result;pub use serialize::StateDict;pub use serialize::save_state_dict;pub use serialize::load_state_dict;pub use serialize::Serializable;pub use fusion::FusionEngine;pub use fusion::ComputeGraph;pub use fusion::FusionPattern;pub use jit::JitCompiler;pub use jit::CompiledKernel;pub use layout::LayoutOptimizer;pub use layout::MemoryLayout;pub use layout::DeviceInfo;
Modules§
- device
- Device abstraction for CPU/GPU execution
- dtype
- Data types supported by GhostFlow tensors
- error
- Error types for GhostFlow
- fusion
- Operation Fusion Engine
- jit
- JIT Compiler for GPU Kernels
- layout
- Memory Layout Optimizer
- ops
- Tensor operations
- prelude
- Prelude for convenient imports
- serialize
- Model serialization and deserialization
- shape
- Shape and stride handling for tensors
- storage
- Storage backend for tensor data
- tensor
- Core Tensor type - the foundation of GhostFlow
- tensor_
ops - Tensor operations trait extensions