1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
// Copyright 2023 The rust-ggstd authors. All rights reserved.
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
use super::bits_tables;
// //go:generate go run make_tables.go
// const uintSize = 32 << (^uint(0) >> 63) // 32 or 64
// // UintSize is the size of a uint in bits.
// const UintSize = uintSize
// // --- LeadingZeros ---
// // LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0.
// fn LeadingZeros(x uint) int { return UintSize - Len(x) }
// // LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
// fn LeadingZeros8(x u8) int { return 8 - Len8(x) }
// // LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
// fn LeadingZeros16(x u16) int { return 16 - Len16(x) }
// // LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
// fn LeadingZeros32(x uint32) int { return 32 - Len32(x) }
// // LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
// fn LeadingZeros64(x uint64) int { return 64 - Len64(x) }
// // --- TrailingZeros ---
// // See http://supertech.csail.mit.edu/papers/debruijn.pdf
// const deBruijn32 = 0x077CB531
// var deBruijn32tab = [32]byte{
// 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
// 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
// }
// const deBruijn64 = 0x03f79d71b4ca8b09
// var deBruijn64tab = [64]byte{
// 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
// 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
// 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
// 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
// }
// // TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
// fn TrailingZeros(x uint) int {
// if UintSize == 32 {
// return TrailingZeros32(uint32(x))
// }
// return TrailingZeros64(uint64(x))
// }
// // TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
// fn TrailingZeros8(x u8) int {
// return int(ntz8tab[x])
// }
// // TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
// fn TrailingZeros16(x u16) int {
// if x == 0 {
// return 16
// }
// // see comment in TrailingZeros64
// return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)])
// }
// // TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
// fn TrailingZeros32(x uint32) int {
// if x == 0 {
// return 32
// }
// // see comment in TrailingZeros64
// return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)])
// }
// // TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
// fn TrailingZeros64(x uint64) int {
// if x == 0 {
// return 64
// }
// // If popcount is fast, replace code below with return popcount(^x & (x - 1)).
// //
// // x & -x leaves only the right-most bit set in the word. Let k be the
// // index of that bit. Since only a single bit is set, the value is two
// // to the power of k. Multiplying by a power of two is equivalent to
// // left shifting, in this case by k bits. The de Bruijn (64 bit) constant
// // is such that all six bit, consecutive substrings are distinct.
// // Therefore, if we have a left shifted version of this constant we can
// // find by how many bits it was shifted by looking at which six bit
// // substring ended up at the top of the word.
// // (Knuth, volume 4, section 7.3.1)
// return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)])
// }
// // --- OnesCount ---
// const m0 = 0x5555555555555555 // 01010101 ...
// const m1 = 0x3333333333333333 // 00110011 ...
// const m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
// const m3 = 0x00ff00ff00ff00ff // etc.
// const m4 = 0x0000ffff0000ffff
// // OnesCount returns the number of one bits ("population count") in x.
// fn OnesCount(x uint) int {
// if UintSize == 32 {
// return OnesCount32(uint32(x))
// }
// return OnesCount64(uint64(x))
// }
// // OnesCount8 returns the number of one bits ("population count") in x.
// fn OnesCount8(x u8) int {
// return int(pop8tab[x])
// }
// // OnesCount16 returns the number of one bits ("population count") in x.
// fn OnesCount16(x u16) int {
// return int(pop8tab[x>>8] + pop8tab[x&0xff])
// }
// // OnesCount32 returns the number of one bits ("population count") in x.
// fn OnesCount32(x uint32) int {
// return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff])
// }
// // OnesCount64 returns the number of one bits ("population count") in x.
// fn OnesCount64(x uint64) int {
// // Implementation: Parallel summing of adjacent bits.
// // See "Hacker's Delight", Chap. 5: Counting Bits.
// // The following pattern shows the general approach:
// //
// // x = x>>1&(m0&m) + x&(m0&m)
// // x = x>>2&(m1&m) + x&(m1&m)
// // x = x>>4&(m2&m) + x&(m2&m)
// // x = x>>8&(m3&m) + x&(m3&m)
// // x = x>>16&(m4&m) + x&(m4&m)
// // x = x>>32&(m5&m) + x&(m5&m)
// // return int(x)
// //
// // Masking (& operations) can be left away when there's no
// // danger that a field's sum will carry over into the next
// // field: Since the result cannot be > 64, 8 bits is enough
// // and we can ignore the masks for the shifts by 8 and up.
// // Per "Hacker's Delight", the first line can be simplified
// // more, but it saves at best one instruction, so we leave
// // it alone for clarity.
// const m = 1<<64 - 1
// x = x>>1&(m0&m) + x&(m0&m)
// x = x>>2&(m1&m) + x&(m1&m)
// x = (x>>4 + x) & (m2 & m)
// x += x >> 8
// x += x >> 16
// x += x >> 32
// return int(x) & (1<<7 - 1)
// }
// // --- RotateLeft ---
// // RotateLeft returns the value of x rotated left by (k mod UintSize) bits.
// // To rotate x right by k bits, call RotateLeft(x, -k).
// //
// // This function's execution time does not depend on the inputs.
// fn RotateLeft(x uint, k int) uint {
// if UintSize == 32 {
// return uint(rotate_left32(uint32(x), k))
// }
// return uint(RotateLeft64(uint64(x), k))
// }
// // RotateLeft8 returns the value of x rotated left by (k mod 8) bits.
// // To rotate x right by k bits, call RotateLeft8(x, -k).
// //
// // This function's execution time does not depend on the inputs.
// fn RotateLeft8(x u8, k int) u8 {
// const n = 8
// s := uint(k) & (n - 1)
// return x<<s | x>>(n-s)
// }
// // RotateLeft16 returns the value of x rotated left by (k mod 16) bits.
// // To rotate x right by k bits, call RotateLeft16(x, -k).
// //
// // This function's execution time does not depend on the inputs.
// fn RotateLeft16(x u16, k int) -> u16 {
// const n = 16
// s := uint(k) & (n - 1)
// return x<<s | x>>(n-s)
// }
/// rotate_left32 returns the value of x rotated left by (k mod 32) bits.
/// To rotate x right by k bits, call rotate_left32(x, -k).
///
/// This function's execution time does not depend on the inputs.
pub fn rotate_left32(x: u32, k: isize) -> u32 {
if k % 32 == 0 {
return x;
}
let n = 32;
let s = (k as usize) & (n - 1);
x << s | x >> (n - s)
}
// // RotateLeft64 returns the value of x rotated left by (k mod 64) bits.
// // To rotate x right by k bits, call RotateLeft64(x, -k).
// //
// // This function's execution time does not depend on the inputs.
// fn RotateLeft64(x uint64, k int) uint64 {
// const n = 64
// s := uint(k) & (n - 1)
// return x<<s | x>>(n-s)
// }
// // --- Reverse ---
// // Reverse returns the value of x with its bits in reversed order.
// fn Reverse(x uint) uint {
// if UintSize == 32 {
// return uint(Reverse32(uint32(x)))
// }
// return uint(Reverse64(uint64(x)))
// }
// reverse8 returns the value of x with its bits in reversed order.
pub fn reverse8(x: u8) -> u8 {
bits_tables::REV8TAB[x as usize]
}
// reverse16 returns the value of x with its bits in reversed order.
pub fn reverse16(x: u16) -> u16 {
((bits_tables::REV8TAB[(x >> 8) as usize]) as u16)
| ((bits_tables::REV8TAB[(x & 0xff) as usize]) as u16) << 8
}
// // Reverse32 returns the value of x with its bits in reversed order.
// fn Reverse32(x uint32) uint32 {
// const m = 1<<32 - 1
// x = x>>1&(m0&m) | x&(m0&m)<<1
// x = x>>2&(m1&m) | x&(m1&m)<<2
// x = x>>4&(m2&m) | x&(m2&m)<<4
// return ReverseBytes32(x)
// }
// // Reverse64 returns the value of x with its bits in reversed order.
// fn Reverse64(x uint64) uint64 {
// const m = 1<<64 - 1
// x = x>>1&(m0&m) | x&(m0&m)<<1
// x = x>>2&(m1&m) | x&(m1&m)<<2
// x = x>>4&(m2&m) | x&(m2&m)<<4
// return ReverseBytes64(x)
// }
// // --- ReverseBytes ---
// // ReverseBytes returns the value of x with its bytes in reversed order.
// //
// // This function's execution time does not depend on the inputs.
// fn ReverseBytes(x uint) uint {
// if UintSize == 32 {
// return uint(ReverseBytes32(uint32(x)))
// }
// return uint(ReverseBytes64(uint64(x)))
// }
// // ReverseBytes16 returns the value of x with its bytes in reversed order.
// //
// // This function's execution time does not depend on the inputs.
// fn ReverseBytes16(x u16) -> u16 {
// return x>>8 | x<<8
// }
// // ReverseBytes32 returns the value of x with its bytes in reversed order.
// //
// // This function's execution time does not depend on the inputs.
// fn ReverseBytes32(x uint32) uint32 {
// const m = 1<<32 - 1
// x = x>>8&(m3&m) | x&(m3&m)<<8
// return x>>16 | x<<16
// }
// // ReverseBytes64 returns the value of x with its bytes in reversed order.
// //
// // This function's execution time does not depend on the inputs.
// fn ReverseBytes64(x uint64) uint64 {
// const m = 1<<64 - 1
// x = x>>8&(m3&m) | x&(m3&m)<<8
// x = x>>16&(m4&m) | x&(m4&m)<<16
// return x>>32 | x<<32
// }
// // --- Len ---
// // Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
// fn Len(x uint) int {
// if UintSize == 32 {
// return Len32(uint32(x))
// }
// return Len64(uint64(x))
// }
// // Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
// fn Len8(x u8) int {
// return int(len8tab[x])
// }
// // Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
// fn Len16(x u16) (n int) {
// if x >= 1<<8 {
// x >>= 8
// n = 8
// }
// return n + int(len8tab[x])
// }
// // Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
// fn Len32(x uint32) (n int) {
// if x >= 1<<16 {
// x >>= 16
// n = 16
// }
// if x >= 1<<8 {
// x >>= 8
// n += 8
// }
// return n + int(len8tab[x])
// }
// // Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
// fn Len64(x uint64) (n int) {
// if x >= 1<<32 {
// x >>= 32
// n = 32
// }
// if x >= 1<<16 {
// x >>= 16
// n += 16
// }
// if x >= 1<<8 {
// x >>= 8
// n += 8
// }
// return n + int(len8tab[x])
// }
// // --- Add with carry ---
// // Add returns the sum with carry of x, y and carry: sum = x + y + carry.
// // The carry input must be 0 or 1; otherwise the behavior is undefined.
// // The carryOut output is guaranteed to be 0 or 1.
// //
// // This function's execution time does not depend on the inputs.
// fn Add(x, y, carry uint) (sum, carryOut uint) {
// if UintSize == 32 {
// s32, c32 := Add32(uint32(x), uint32(y), uint32(carry))
// return uint(s32), uint(c32)
// }
// s64, c64 := Add64(uint64(x), uint64(y), uint64(carry))
// return uint(s64), uint(c64)
// }
// // Add32 returns the sum with carry of x, y and carry: sum = x + y + carry.
// // The carry input must be 0 or 1; otherwise the behavior is undefined.
// // The carryOut output is guaranteed to be 0 or 1.
// //
// // This function's execution time does not depend on the inputs.
// fn Add32(x, y, carry uint32) (sum, carryOut uint32) {
// sum64 := uint64(x) + uint64(y) + uint64(carry)
// sum = uint32(sum64)
// carryOut = uint32(sum64 >> 32)
// return
// }
// // Add64 returns the sum with carry of x, y and carry: sum = x + y + carry.
// // The carry input must be 0 or 1; otherwise the behavior is undefined.
// // The carryOut output is guaranteed to be 0 or 1.
// //
// // This function's execution time does not depend on the inputs.
// fn Add64(x, y, carry uint64) (sum, carryOut uint64) {
// sum = x + y + carry
// // The sum will overflow if both top bits are set (x & y) or if one of them
// // is (x | y), and a carry from the lower place happened. If such a carry
// // happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
// carryOut = ((x & y) | ((x | y) &^ sum)) >> 63
// return
// }
// // --- Subtract with borrow ---
// // Sub returns the difference of x, y and borrow: diff = x - y - borrow.
// // The borrow input must be 0 or 1; otherwise the behavior is undefined.
// // The borrowOut output is guaranteed to be 0 or 1.
// //
// // This function's execution time does not depend on the inputs.
// fn Sub(x, y, borrow uint) (diff, borrowOut uint) {
// if UintSize == 32 {
// d32, b32 := Sub32(uint32(x), uint32(y), uint32(borrow))
// return uint(d32), uint(b32)
// }
// d64, b64 := Sub64(uint64(x), uint64(y), uint64(borrow))
// return uint(d64), uint(b64)
// }
// // Sub32 returns the difference of x, y and borrow, diff = x - y - borrow.
// // The borrow input must be 0 or 1; otherwise the behavior is undefined.
// // The borrowOut output is guaranteed to be 0 or 1.
// //
// // This function's execution time does not depend on the inputs.
// fn Sub32(x, y, borrow uint32) (diff, borrowOut uint32) {
// diff = x - y - borrow
// // The difference will underflow if the top bit of x is not set and the top
// // bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
// // from the lower place happens. If that borrow happens, the result will be
// // 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
// borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 31
// return
// }
// // Sub64 returns the difference of x, y and borrow: diff = x - y - borrow.
// // The borrow input must be 0 or 1; otherwise the behavior is undefined.
// // The borrowOut output is guaranteed to be 0 or 1.
// //
// // This function's execution time does not depend on the inputs.
// fn Sub64(x, y, borrow uint64) (diff, borrowOut uint64) {
// diff = x - y - borrow
// // See Sub32 for the bit logic.
// borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63
// return
// }
// // --- Full-width multiply ---
// // Mul returns the full-width product of x and y: (hi, lo) = x * y
// // with the product bits' upper half returned in hi and the lower
// // half returned in lo.
// //
// // This function's execution time does not depend on the inputs.
// fn Mul(x, y uint) (hi, lo uint) {
// if UintSize == 32 {
// h, l := Mul32(uint32(x), uint32(y))
// return uint(h), uint(l)
// }
// h, l := Mul64(uint64(x), uint64(y))
// return uint(h), uint(l)
// }
// // Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y
// // with the product bits' upper half returned in hi and the lower
// // half returned in lo.
// //
// // This function's execution time does not depend on the inputs.
// fn Mul32(x, y uint32) (hi, lo uint32) {
// tmp := uint64(x) * uint64(y)
// hi, lo = uint32(tmp>>32), uint32(tmp)
// return
// }
// // Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y
// // with the product bits' upper half returned in hi and the lower
// // half returned in lo.
// //
// // This function's execution time does not depend on the inputs.
// fn Mul64(x, y uint64) (hi, lo uint64) {
// const mask32 = 1<<32 - 1
// x0 := x & mask32
// x1 := x >> 32
// y0 := y & mask32
// y1 := y >> 32
// w0 := x0 * y0
// t := x1*y0 + w0>>32
// w1 := t & mask32
// w2 := t >> 32
// w1 += x0 * y1
// hi = x1*y1 + w2 + w1>>32
// lo = x * y
// return
// }
// // --- Full-width divide ---
// // Div returns the quotient and remainder of (hi, lo) divided by y:
// // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// // half in parameter hi and the lower half in parameter lo.
// // Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
// fn Div(hi, lo, y uint) (quo, rem uint) {
// if UintSize == 32 {
// q, r := Div32(uint32(hi), uint32(lo), uint32(y))
// return uint(q), uint(r)
// }
// q, r := Div64(uint64(hi), uint64(lo), uint64(y))
// return uint(q), uint(r)
// }
// // Div32 returns the quotient and remainder of (hi, lo) divided by y:
// // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// // half in parameter hi and the lower half in parameter lo.
// // Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
// fn Div32(hi, lo, y uint32) (quo, rem uint32) {
// if y != 0 && y <= hi {
// panic(overflowError)
// }
// z := uint64(hi)<<32 | uint64(lo)
// quo, rem = uint32(z/uint64(y)), uint32(z%uint64(y))
// return
// }
// // Div64 returns the quotient and remainder of (hi, lo) divided by y:
// // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
// // half in parameter hi and the lower half in parameter lo.
// // Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
// fn Div64(hi, lo, y uint64) (quo, rem uint64) {
// if y == 0 {
// panic(divideError)
// }
// if y <= hi {
// panic(overflowError)
// }
// // If high part is zero, we can directly return the results.
// if hi == 0 {
// return lo / y, lo % y
// }
// s := uint(LeadingZeros64(y))
// y <<= s
// const (
// two32 = 1 << 32
// mask32 = two32 - 1
// )
// yn1 := y >> 32
// yn0 := y & mask32
// un32 := hi<<s | lo>>(64-s)
// un10 := lo << s
// un1 := un10 >> 32
// un0 := un10 & mask32
// q1 := un32 / yn1
// rhat := un32 - q1*yn1
// for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
// q1--
// rhat += yn1
// if rhat >= two32 {
// break
// }
// }
// un21 := un32*two32 + un1 - q1*y
// q0 := un21 / yn1
// rhat = un21 - q0*yn1
// for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
// q0--
// rhat += yn1
// if rhat >= two32 {
// break
// }
// }
// return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s
// }
// // Rem returns the remainder of (hi, lo) divided by y. Rem panics for
// // y == 0 (division by zero) but, unlike Div, it doesn't panic on a
// // quotient overflow.
// fn Rem(hi, lo, y uint) uint {
// if UintSize == 32 {
// return uint(Rem32(uint32(hi), uint32(lo), uint32(y)))
// }
// return uint(Rem64(uint64(hi), uint64(lo), uint64(y)))
// }
// // Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics
// // for y == 0 (division by zero) but, unlike Div32, it doesn't panic
// // on a quotient overflow.
// fn Rem32(hi, lo, y uint32) uint32 {
// return uint32((uint64(hi)<<32 | uint64(lo)) % uint64(y))
// }
// // Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics
// // for y == 0 (division by zero) but, unlike Div64, it doesn't panic
// // on a quotient overflow.
// fn Rem64(hi, lo, y uint64) uint64 {
// // We scale down hi so that hi < y, then use Div64 to compute the
// // rem with the guarantee that it won't panic on quotient overflow.
// // Given that
// // hi ≡ hi%y (mod y)
// // we have
// // hi<<64 + lo ≡ (hi%y)<<64 + lo (mod y)
// _, rem := Div64(hi%y, lo, y)
// return rem
// }
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_rotate_left() {
assert_eq!(
0b_00000000_00000000_00000000_00001111,
rotate_left32(0b1111, 0)
);
assert_eq!(
0b_00000000_00000000_00000000_00001111,
rotate_left32(0b1111, 32)
);
assert_eq!(
0b_00000000_00000000_00000000_00001111,
rotate_left32(0b1111, -32)
);
assert_eq!(
0b_00000000_00000000_00000000_00011110,
rotate_left32(0b1111, 1)
);
assert_eq!(
0b_10000000_00000000_00000000_00000111,
rotate_left32(0b1111, -1)
);
assert_eq!(
0b_00000000_00000000_00000000_00111100,
rotate_left32(0b1111, 2)
);
assert_eq!(
0b_11000000_00000000_00000000_00000011,
rotate_left32(0b1111, -2)
);
assert_eq!(
0b_00000000_00000000_00000000_00011110,
rotate_left32(0b1111, 33)
);
assert_eq!(
0b_10000000_00000000_00000000_00000111,
rotate_left32(0b1111, -33)
);
}
}