Crate ggml_sys_bleedingedge

Crate ggml_sys_bleedingedge 

Source

Structs§

_IO_FILE
_IO_codecvt
_IO_marker
_IO_wide_data
ggml_backend_buffer
ggml_cgraph
ggml_compute_params
ggml_context
ggml_cplan
ggml_hash_set
ggml_init_params
ggml_object
ggml_opt_context
ggml_opt_context__bindgen_ty_1
ggml_opt_context__bindgen_ty_2
ggml_opt_params
ggml_opt_params__bindgen_ty_1
ggml_opt_params__bindgen_ty_2
ggml_scratch
ggml_tensor
ggml_type_traits_t
gguf_context
gguf_init_params
llama_batch
llama_beam_view
llama_beams_state
llama_chat_message
llama_context
llama_context_params
llama_grammar
llama_grammar_element
llama_kv_cache_view
llama_kv_cache_view_cell
llama_model
llama_model_kv_override
llama_model_params
llama_model_quantize_params
llama_timings
llama_token_data
llama_token_data_array

Constants§

GGMLSYS_VERSION
GGML_DEFAULT_GRAPH_SIZE
GGML_DEFAULT_N_THREADS
GGML_EXIT_ABORTED
GGML_EXIT_SUCCESS
GGML_FILE_MAGIC
GGML_FILE_VERSION
GGML_MAX_CONTEXTS
GGML_MAX_DIMS
GGML_MAX_NAME
GGML_MAX_OP_PARAMS
GGML_MAX_PARAMS
GGML_MAX_SRC
GGML_MEM_ALIGN
GGML_N_TASKS_MAX
GGML_OBJECT_SIZE
GGML_QNT_VERSION
GGML_QNT_VERSION_FACTOR
GGML_TENSOR_SIZE
GGUF_DEFAULT_ALIGNMENT
GGUF_MAGIC
GGUF_VERSION
LLAMA_DEFAULT_SEED
LLAMA_FILE_MAGIC_GGLA
LLAMA_FILE_MAGIC_GGSN
LLAMA_FILE_MAGIC_GGSQ
LLAMA_MAX_RNG_STATE
LLAMA_SESSION_MAGIC
LLAMA_SESSION_VERSION
LLAMA_STATE_SEQ_MAGIC
LLAMA_STATE_SEQ_VERSION
ggml_backend_type_GGML_BACKEND_TYPE_CPU
ggml_backend_type_GGML_BACKEND_TYPE_GPU
ggml_backend_type_GGML_BACKEND_TYPE_GPU_SPLIT
ggml_cgraph_eval_order_GGML_CGRAPH_EVAL_ORDER_COUNT
ggml_cgraph_eval_order_GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT
ggml_cgraph_eval_order_GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT
ggml_ftype_GGML_FTYPE_ALL_F32
ggml_ftype_GGML_FTYPE_MOSTLY_F16
ggml_ftype_GGML_FTYPE_MOSTLY_IQ1_M
ggml_ftype_GGML_FTYPE_MOSTLY_IQ1_S
ggml_ftype_GGML_FTYPE_MOSTLY_IQ2_S
ggml_ftype_GGML_FTYPE_MOSTLY_IQ2_XS
ggml_ftype_GGML_FTYPE_MOSTLY_IQ2_XXS
ggml_ftype_GGML_FTYPE_MOSTLY_IQ3_S
ggml_ftype_GGML_FTYPE_MOSTLY_IQ3_XXS
ggml_ftype_GGML_FTYPE_MOSTLY_IQ4_NL
ggml_ftype_GGML_FTYPE_MOSTLY_IQ4_XS
ggml_ftype_GGML_FTYPE_MOSTLY_Q2_K
ggml_ftype_GGML_FTYPE_MOSTLY_Q3_K
ggml_ftype_GGML_FTYPE_MOSTLY_Q4_0
ggml_ftype_GGML_FTYPE_MOSTLY_Q4_1
ggml_ftype_GGML_FTYPE_MOSTLY_Q4_1_SOME_F16
ggml_ftype_GGML_FTYPE_MOSTLY_Q4_K
ggml_ftype_GGML_FTYPE_MOSTLY_Q5_0
ggml_ftype_GGML_FTYPE_MOSTLY_Q5_1
ggml_ftype_GGML_FTYPE_MOSTLY_Q5_K
ggml_ftype_GGML_FTYPE_MOSTLY_Q6_K
ggml_ftype_GGML_FTYPE_MOSTLY_Q8_0
ggml_ftype_GGML_FTYPE_UNKNOWN
ggml_linesearch_GGML_LINESEARCH_BACKTRACKING_ARMIJO
ggml_linesearch_GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE
ggml_linesearch_GGML_LINESEARCH_BACKTRACKING_WOLFE
ggml_linesearch_GGML_LINESEARCH_DEFAULT
ggml_log_level_GGML_LOG_LEVEL_DEBUG
ggml_log_level_GGML_LOG_LEVEL_ERROR
ggml_log_level_GGML_LOG_LEVEL_INFO
ggml_log_level_GGML_LOG_LEVEL_WARN
ggml_numa_strategy_GGML_NUMA_STRATEGY_COUNT
ggml_numa_strategy_GGML_NUMA_STRATEGY_DISABLED
ggml_numa_strategy_GGML_NUMA_STRATEGY_DISTRIBUTE
ggml_numa_strategy_GGML_NUMA_STRATEGY_ISOLATE
ggml_numa_strategy_GGML_NUMA_STRATEGY_MIRROR
ggml_numa_strategy_GGML_NUMA_STRATEGY_NUMACTL
ggml_object_type_GGML_OBJECT_TYPE_GRAPH
ggml_object_type_GGML_OBJECT_TYPE_TENSOR
ggml_object_type_GGML_OBJECT_TYPE_WORK_BUFFER
ggml_op_GGML_OP_ACC
ggml_op_GGML_OP_ADD
ggml_op_GGML_OP_ADD1
ggml_op_GGML_OP_ADD_REL_POS
ggml_op_GGML_OP_ALIBI
ggml_op_GGML_OP_ARANGE
ggml_op_GGML_OP_ARGMAX
ggml_op_GGML_OP_ARGSORT
ggml_op_GGML_OP_CLAMP
ggml_op_GGML_OP_CONCAT
ggml_op_GGML_OP_CONT
ggml_op_GGML_OP_CONV_TRANSPOSE_1D
ggml_op_GGML_OP_CONV_TRANSPOSE_2D
ggml_op_GGML_OP_COUNT
ggml_op_GGML_OP_CPY
ggml_op_GGML_OP_CROSS_ENTROPY_LOSS
ggml_op_GGML_OP_CROSS_ENTROPY_LOSS_BACK
ggml_op_GGML_OP_DIAG
ggml_op_GGML_OP_DIAG_MASK_INF
ggml_op_GGML_OP_DIAG_MASK_ZERO
ggml_op_GGML_OP_DIV
ggml_op_GGML_OP_DUP
ggml_op_GGML_OP_FLASH_ATTN
ggml_op_GGML_OP_FLASH_ATTN_BACK
ggml_op_GGML_OP_FLASH_FF
ggml_op_GGML_OP_GET_REL_POS
ggml_op_GGML_OP_GET_ROWS
ggml_op_GGML_OP_GET_ROWS_BACK
ggml_op_GGML_OP_GROUP_NORM
ggml_op_GGML_OP_IM2COL
ggml_op_GGML_OP_LEAKY_RELU
ggml_op_GGML_OP_LOG
ggml_op_GGML_OP_MAP_BINARY
ggml_op_GGML_OP_MAP_CUSTOM1
ggml_op_GGML_OP_MAP_CUSTOM2
ggml_op_GGML_OP_MAP_CUSTOM3
ggml_op_GGML_OP_MAP_CUSTOM1_F32
ggml_op_GGML_OP_MAP_CUSTOM2_F32
ggml_op_GGML_OP_MAP_CUSTOM3_F32
ggml_op_GGML_OP_MAP_UNARY
ggml_op_GGML_OP_MEAN
ggml_op_GGML_OP_MUL
ggml_op_GGML_OP_MUL_MAT
ggml_op_GGML_OP_MUL_MAT_ID
ggml_op_GGML_OP_NONE
ggml_op_GGML_OP_NORM
ggml_op_GGML_OP_OUT_PROD
ggml_op_GGML_OP_PAD
ggml_op_GGML_OP_PERMUTE
ggml_op_GGML_OP_POOL_1D
ggml_op_GGML_OP_POOL_2D
ggml_op_GGML_OP_REPEAT
ggml_op_GGML_OP_REPEAT_BACK
ggml_op_GGML_OP_RESHAPE
ggml_op_GGML_OP_RMS_NORM
ggml_op_GGML_OP_RMS_NORM_BACK
ggml_op_GGML_OP_ROPE
ggml_op_GGML_OP_ROPE_BACK
ggml_op_GGML_OP_SCALE
ggml_op_GGML_OP_SET
ggml_op_GGML_OP_SILU_BACK
ggml_op_GGML_OP_SOFT_MAX
ggml_op_GGML_OP_SOFT_MAX_BACK
ggml_op_GGML_OP_SQR
ggml_op_GGML_OP_SQRT
ggml_op_GGML_OP_SSM_CONV
ggml_op_GGML_OP_SSM_SCAN
ggml_op_GGML_OP_SUB
ggml_op_GGML_OP_SUM
ggml_op_GGML_OP_SUM_ROWS
ggml_op_GGML_OP_TIMESTEP_EMBEDDING
ggml_op_GGML_OP_TRANSPOSE
ggml_op_GGML_OP_UNARY
ggml_op_GGML_OP_UPSCALE
ggml_op_GGML_OP_VIEW
ggml_op_GGML_OP_WIN_PART
ggml_op_GGML_OP_WIN_UNPART
ggml_op_pool_GGML_OP_POOL_AVG
ggml_op_pool_GGML_OP_POOL_COUNT
ggml_op_pool_GGML_OP_POOL_MAX
ggml_opt_result_GGML_LINESEARCH_FAIL
ggml_opt_result_GGML_LINESEARCH_INVALID_PARAMETERS
ggml_opt_result_GGML_LINESEARCH_MAXIMUM_ITERATIONS
ggml_opt_result_GGML_LINESEARCH_MAXIMUM_STEP
ggml_opt_result_GGML_LINESEARCH_MINIMUM_STEP
ggml_opt_result_GGML_OPT_RESULT_CANCEL
ggml_opt_result_GGML_OPT_RESULT_DID_NOT_CONVERGE
ggml_opt_result_GGML_OPT_RESULT_FAIL
ggml_opt_result_GGML_OPT_RESULT_INVALID_WOLFE
ggml_opt_result_GGML_OPT_RESULT_NO_CONTEXT
ggml_opt_result_GGML_OPT_RESULT_OK
ggml_opt_type_GGML_OPT_TYPE_ADAM
ggml_opt_type_GGML_OPT_TYPE_LBFGS
ggml_prec_GGML_PREC_DEFAULT
ggml_prec_GGML_PREC_F32
ggml_sort_order_GGML_SORT_ORDER_ASC
ggml_sort_order_GGML_SORT_ORDER_DESC
ggml_status_GGML_STATUS_ABORTED
ggml_status_GGML_STATUS_ALLOC_FAILED
ggml_status_GGML_STATUS_FAILED
ggml_status_GGML_STATUS_SUCCESS
ggml_task_type_GGML_TASK_TYPE_COMPUTE
ggml_task_type_GGML_TASK_TYPE_FINALIZE
ggml_task_type_GGML_TASK_TYPE_INIT
ggml_tensor_flag_GGML_TENSOR_FLAG_INPUT
ggml_tensor_flag_GGML_TENSOR_FLAG_OUTPUT
ggml_tensor_flag_GGML_TENSOR_FLAG_PARAM
ggml_type_GGML_TYPE_COUNT
ggml_type_GGML_TYPE_F16
ggml_type_GGML_TYPE_F32
ggml_type_GGML_TYPE_F64
ggml_type_GGML_TYPE_I8
ggml_type_GGML_TYPE_I16
ggml_type_GGML_TYPE_I32
ggml_type_GGML_TYPE_I64
ggml_type_GGML_TYPE_IQ1_M
ggml_type_GGML_TYPE_IQ1_S
ggml_type_GGML_TYPE_IQ2_S
ggml_type_GGML_TYPE_IQ2_XS
ggml_type_GGML_TYPE_IQ2_XXS
ggml_type_GGML_TYPE_IQ3_S
ggml_type_GGML_TYPE_IQ3_XXS
ggml_type_GGML_TYPE_IQ4_NL
ggml_type_GGML_TYPE_IQ4_XS
ggml_type_GGML_TYPE_Q2_K
ggml_type_GGML_TYPE_Q3_K
ggml_type_GGML_TYPE_Q4_0
ggml_type_GGML_TYPE_Q4_1
ggml_type_GGML_TYPE_Q4_K
ggml_type_GGML_TYPE_Q5_0
ggml_type_GGML_TYPE_Q5_1
ggml_type_GGML_TYPE_Q5_K
ggml_type_GGML_TYPE_Q6_K
ggml_type_GGML_TYPE_Q8_0
ggml_type_GGML_TYPE_Q8_1
ggml_type_GGML_TYPE_Q8_K
ggml_unary_op_GGML_UNARY_OP_ABS
ggml_unary_op_GGML_UNARY_OP_COUNT
ggml_unary_op_GGML_UNARY_OP_ELU
ggml_unary_op_GGML_UNARY_OP_GELU
ggml_unary_op_GGML_UNARY_OP_GELU_QUICK
ggml_unary_op_GGML_UNARY_OP_HARDSIGMOID
ggml_unary_op_GGML_UNARY_OP_HARDSWISH
ggml_unary_op_GGML_UNARY_OP_NEG
ggml_unary_op_GGML_UNARY_OP_RELU
ggml_unary_op_GGML_UNARY_OP_SGN
ggml_unary_op_GGML_UNARY_OP_SILU
ggml_unary_op_GGML_UNARY_OP_STEP
ggml_unary_op_GGML_UNARY_OP_TANH
gguf_type_GGUF_TYPE_ARRAY
gguf_type_GGUF_TYPE_BOOL
gguf_type_GGUF_TYPE_COUNT
gguf_type_GGUF_TYPE_FLOAT32
gguf_type_GGUF_TYPE_FLOAT64
gguf_type_GGUF_TYPE_INT8
gguf_type_GGUF_TYPE_INT16
gguf_type_GGUF_TYPE_INT32
gguf_type_GGUF_TYPE_INT64
gguf_type_GGUF_TYPE_STRING
gguf_type_GGUF_TYPE_UINT8
gguf_type_GGUF_TYPE_UINT16
gguf_type_GGUF_TYPE_UINT32
gguf_type_GGUF_TYPE_UINT64
llama_ftype_LLAMA_FTYPE_ALL_F32
llama_ftype_LLAMA_FTYPE_GUESSED
llama_ftype_LLAMA_FTYPE_MOSTLY_F16
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ1_M
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ1_S
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ2_M
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ2_S
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ2_XS
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ2_XXS
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ3_M
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ3_S
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ3_XS
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ3_XXS
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ4_NL
llama_ftype_LLAMA_FTYPE_MOSTLY_IQ4_XS
llama_ftype_LLAMA_FTYPE_MOSTLY_Q2_K
llama_ftype_LLAMA_FTYPE_MOSTLY_Q2_K_S
llama_ftype_LLAMA_FTYPE_MOSTLY_Q3_K_L
llama_ftype_LLAMA_FTYPE_MOSTLY_Q3_K_M
llama_ftype_LLAMA_FTYPE_MOSTLY_Q3_K_S
llama_ftype_LLAMA_FTYPE_MOSTLY_Q4_0
llama_ftype_LLAMA_FTYPE_MOSTLY_Q4_1
llama_ftype_LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16
llama_ftype_LLAMA_FTYPE_MOSTLY_Q4_K_M
llama_ftype_LLAMA_FTYPE_MOSTLY_Q4_K_S
llama_ftype_LLAMA_FTYPE_MOSTLY_Q5_0
llama_ftype_LLAMA_FTYPE_MOSTLY_Q5_1
llama_ftype_LLAMA_FTYPE_MOSTLY_Q5_K_M
llama_ftype_LLAMA_FTYPE_MOSTLY_Q5_K_S
llama_ftype_LLAMA_FTYPE_MOSTLY_Q6_K
llama_ftype_LLAMA_FTYPE_MOSTLY_Q8_0
llama_gretype_LLAMA_GRETYPE_ALT
llama_gretype_LLAMA_GRETYPE_CHAR
llama_gretype_LLAMA_GRETYPE_CHAR_ALT
llama_gretype_LLAMA_GRETYPE_CHAR_NOT
llama_gretype_LLAMA_GRETYPE_CHAR_RNG_UPPER
llama_gretype_LLAMA_GRETYPE_END
llama_gretype_LLAMA_GRETYPE_RULE_REF
llama_model_kv_override_type_LLAMA_KV_OVERRIDE_TYPE_BOOL
llama_model_kv_override_type_LLAMA_KV_OVERRIDE_TYPE_FLOAT
llama_model_kv_override_type_LLAMA_KV_OVERRIDE_TYPE_INT
llama_model_kv_override_type_LLAMA_KV_OVERRIDE_TYPE_STR
llama_pooling_type_LLAMA_POOLING_TYPE_CLS
llama_pooling_type_LLAMA_POOLING_TYPE_MEAN
llama_pooling_type_LLAMA_POOLING_TYPE_NONE
llama_pooling_type_LLAMA_POOLING_TYPE_UNSPECIFIED
llama_rope_scaling_type_LLAMA_ROPE_SCALING_TYPE_LINEAR
llama_rope_scaling_type_LLAMA_ROPE_SCALING_TYPE_MAX_VALUE
llama_rope_scaling_type_LLAMA_ROPE_SCALING_TYPE_NONE
llama_rope_scaling_type_LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED
llama_rope_scaling_type_LLAMA_ROPE_SCALING_TYPE_YARN
llama_rope_type_LLAMA_ROPE_TYPE_GLM
llama_rope_type_LLAMA_ROPE_TYPE_NEOX
llama_rope_type_LLAMA_ROPE_TYPE_NONE
llama_rope_type_LLAMA_ROPE_TYPE_NORM
llama_split_mode_LLAMA_SPLIT_MODE_LAYER
llama_split_mode_LLAMA_SPLIT_MODE_NONE
llama_split_mode_LLAMA_SPLIT_MODE_ROW
llama_token_type_LLAMA_TOKEN_TYPE_BYTE
llama_token_type_LLAMA_TOKEN_TYPE_CONTROL
llama_token_type_LLAMA_TOKEN_TYPE_NORMAL
llama_token_type_LLAMA_TOKEN_TYPE_UNDEFINED
llama_token_type_LLAMA_TOKEN_TYPE_UNKNOWN
llama_token_type_LLAMA_TOKEN_TYPE_UNUSED
llama_token_type_LLAMA_TOKEN_TYPE_USER_DEFINED
llama_vocab_type_LLAMA_VOCAB_TYPE_BPE
llama_vocab_type_LLAMA_VOCAB_TYPE_NONE
llama_vocab_type_LLAMA_VOCAB_TYPE_SPM
llama_vocab_type_LLAMA_VOCAB_TYPE_WPM

Functions§

ggml_abs
ggml_abs_inplace
ggml_acc
ggml_acc_inplace
ggml_add
ggml_add1
ggml_add1_inplace
ggml_add_cast
ggml_add_inplace
ggml_add_rel_pos
ggml_add_rel_pos_inplace
ggml_alibi
ggml_arange
ggml_are_same_shape
ggml_argmax
ggml_argsort
ggml_blck_size
ggml_build_backward_expand
ggml_build_backward_gradient_checkpointing
ggml_build_forward_expand
ggml_cast
ggml_clamp
ggml_concat
ggml_cont
ggml_cont_1d
ggml_cont_2d
ggml_cont_3d
ggml_cont_4d
ggml_conv_1d
ggml_conv_1d_ph
ggml_conv_2d
ggml_conv_2d_s1_ph
ggml_conv_2d_sk_p0
ggml_conv_depthwise_2d
ggml_conv_transpose_1d
ggml_conv_transpose_2d_p0
ggml_cpu_has_arm_fma
ggml_cpu_has_avx
ggml_cpu_has_avx2
ggml_cpu_has_avx512
ggml_cpu_has_avx512_vbmi
ggml_cpu_has_avx512_vnni
ggml_cpu_has_avx_vnni
ggml_cpu_has_blas
ggml_cpu_has_clblast
ggml_cpu_has_cuda
ggml_cpu_has_f16c
ggml_cpu_has_fma
ggml_cpu_has_fp16_va
ggml_cpu_has_gpublas
ggml_cpu_has_kompute
ggml_cpu_has_matmul_int8
ggml_cpu_has_metal
ggml_cpu_has_neon
ggml_cpu_has_sse3
ggml_cpu_has_ssse3
ggml_cpu_has_sycl
ggml_cpu_has_vsx
ggml_cpu_has_vulkan
ggml_cpu_has_wasm_simd
ggml_cpy
ggml_cross_entropy_loss
ggml_cross_entropy_loss_back
ggml_cycles
ggml_cycles_per_ms
ggml_diag
ggml_diag_mask_inf
ggml_diag_mask_inf_inplace
ggml_diag_mask_zero
ggml_diag_mask_zero_inplace
ggml_div
ggml_div_inplace
ggml_dup
ggml_dup_inplace
ggml_dup_tensor
ggml_element_size
ggml_elu
ggml_elu_inplace
ggml_flash_attn
ggml_flash_attn_back
ggml_flash_ff
ggml_fopen
ggml_format_name
ggml_fp16_to_fp32
ggml_fp16_to_fp32_row
ggml_fp32_to_fp16
ggml_fp32_to_fp16_row
ggml_free
ggml_ftype_to_ggml_type
ggml_gelu
ggml_gelu_inplace
ggml_gelu_quick
ggml_gelu_quick_inplace
ggml_get_data
ggml_get_data_f32
ggml_get_f32_1d
ggml_get_f32_nd
ggml_get_first_tensor
ggml_get_i32_1d
ggml_get_i32_nd
ggml_get_max_tensor_size
ggml_get_mem_buffer
ggml_get_mem_size
ggml_get_name
ggml_get_next_tensor
ggml_get_no_alloc
ggml_get_rel_pos
ggml_get_rows
ggml_get_rows_back
ggml_get_tensor
ggml_get_unary_op
ggml_graph_clear
ggml_graph_compute
ggml_graph_compute_with_ctx
ggml_graph_cpy
ggml_graph_dump_dot
ggml_graph_dup
ggml_graph_export
ggml_graph_get_tensor
ggml_graph_import
ggml_graph_overhead
ggml_graph_overhead_custom
ggml_graph_plan
ggml_graph_print
ggml_graph_reset
ggml_graph_view
ggml_group_norm
ggml_group_norm_inplace
ggml_guid_matches
ggml_hardsigmoid
ggml_hardswish
ggml_im2col
ggml_init
ggml_internal_get_type_traits
ggml_is_3d
ggml_is_contiguous
ggml_is_empty
ggml_is_matrix
ggml_is_numa
ggml_is_permuted
ggml_is_quantized
ggml_is_scalar
ggml_is_transposed
ggml_is_vector
ggml_leaky_relu
ggml_log
ggml_log_inplace
ggml_map_binary_f32
ggml_map_binary_inplace_f32
ggml_map_custom1
ggml_map_custom2
ggml_map_custom3
ggml_map_custom1_f32
ggml_map_custom1_inplace
ggml_map_custom1_inplace_f32
ggml_map_custom2_f32
ggml_map_custom2_inplace
ggml_map_custom2_inplace_f32
ggml_map_custom3_f32
ggml_map_custom3_inplace
ggml_map_custom3_inplace_f32
ggml_map_unary_f32
ggml_map_unary_inplace_f32
ggml_mean
ggml_mul
ggml_mul_inplace
ggml_mul_mat
ggml_mul_mat_id
ggml_mul_mat_set_prec
ggml_n_dims
ggml_nbytes
ggml_nbytes_pad
ggml_neg
ggml_neg_inplace
ggml_nelements
ggml_new_f32
ggml_new_graph
ggml_new_graph_custom
ggml_new_i32
ggml_new_tensor
ggml_new_tensor_1d
ggml_new_tensor_2d
ggml_new_tensor_3d
ggml_new_tensor_4d
ggml_norm
ggml_norm_inplace
ggml_nrows
ggml_numa_init
ggml_op_desc
ggml_op_name
ggml_op_symbol
ggml_opt
ggml_opt_default_params
ggml_opt_init
ggml_opt_resume
ggml_opt_resume_g
ggml_out_prod
ggml_pad
ggml_permute
ggml_pool_1d
ggml_pool_2d
ggml_print_backtrace
ggml_print_object
ggml_print_objects
ggml_quantize_chunk
ggml_quantize_free
ggml_quantize_init
ggml_quantize_requires_imatrix
ggml_relu
ggml_relu_inplace
ggml_repeat
ggml_repeat_back
ggml_reshape
ggml_reshape_1d
ggml_reshape_2d
ggml_reshape_3d
ggml_reshape_4d
ggml_rms_norm
ggml_rms_norm_back
ggml_rms_norm_inplace
ggml_rope
ggml_rope_back
ggml_rope_custom
ggml_rope_custom_inplace
ggml_rope_inplace
ggml_rope_xpos_inplace
ggml_rope_yarn_corr_dims
ggml_row_size
ggml_scale
ggml_scale_inplace
ggml_set
ggml_set_1d
ggml_set_1d_inplace
ggml_set_2d
ggml_set_2d_inplace
ggml_set_f32
ggml_set_f32_1d
ggml_set_f32_nd
ggml_set_i32
ggml_set_i32_1d
ggml_set_i32_nd
ggml_set_inplace
ggml_set_input
ggml_set_name
ggml_set_no_alloc
ggml_set_output
ggml_set_param
ggml_set_scratch
ggml_set_zero
ggml_sgn
ggml_sgn_inplace
ggml_silu
ggml_silu_back
ggml_silu_inplace
ggml_soft_max
ggml_soft_max_back
ggml_soft_max_back_inplace
ggml_soft_max_ext
ggml_soft_max_inplace
ggml_sqr
ggml_sqr_inplace
ggml_sqrt
ggml_sqrt_inplace
ggml_ssm_conv
ggml_ssm_scan
ggml_status_to_string
ggml_step
ggml_step_inplace
ggml_sub
ggml_sub_inplace
ggml_sum
ggml_sum_rows
ggml_tanh
ggml_tanh_inplace
ggml_tensor_overhead
ggml_time_init
ggml_time_ms
ggml_time_us
ggml_timestep_embedding
ggml_top_k
ggml_transpose
ggml_type_name
ggml_type_size
ggml_type_sizef
ggml_unary
ggml_unary_inplace
ggml_unary_op_name
ggml_unravel_index
ggml_upscale
ggml_used_mem
ggml_validate_row_data
ggml_view_1d
ggml_view_2d
ggml_view_3d
ggml_view_4d
ggml_view_tensor
ggml_win_part
ggml_win_unpart
gguf_add_tensor
gguf_find_key
gguf_find_tensor
gguf_free
gguf_get_alignment
gguf_get_arr_data
gguf_get_arr_n
gguf_get_arr_str
gguf_get_arr_type
gguf_get_data
gguf_get_data_offset
gguf_get_key
gguf_get_kv_type
gguf_get_meta_data
gguf_get_meta_size
gguf_get_n_kv
gguf_get_n_tensors
gguf_get_tensor_name
gguf_get_tensor_offset
gguf_get_tensor_type
gguf_get_val_bool
gguf_get_val_data
gguf_get_val_f32
gguf_get_val_f64
gguf_get_val_i8
gguf_get_val_i16
gguf_get_val_i32
gguf_get_val_i64
gguf_get_val_str
gguf_get_val_u8
gguf_get_val_u16
gguf_get_val_u32
gguf_get_val_u64
gguf_get_version
gguf_init_empty
gguf_init_from_file
gguf_remove_key
gguf_set_arr_data
gguf_set_arr_str
gguf_set_kv
gguf_set_tensor_data
gguf_set_tensor_type
gguf_set_val_bool
gguf_set_val_f32
gguf_set_val_f64
gguf_set_val_i8
gguf_set_val_i16
gguf_set_val_i32
gguf_set_val_i64
gguf_set_val_str
gguf_set_val_u8
gguf_set_val_u16
gguf_set_val_u32
gguf_set_val_u64
gguf_type_name
gguf_write_to_file
llama_add_bos_token
llama_add_eos_token
llama_backend_free
llama_backend_init
llama_batch_free
llama_batch_get_one
llama_batch_init
llama_beam_search
@details Deterministically returns entire sentence constructed by a beam search. @param ctx Pointer to the llama_context. @param callback Invoked for each iteration of the beam_search loop, passing in beams_state. @param callback_data A pointer that is simply passed back to callback. @param n_beams Number of beams to use. @param n_past Number of tokens already evaluated. @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
llama_chat_apply_template
Apply chat template. Inspired by hf apply_chat_template() on python. Both “model” and “custom_template” are optional, but at least one is required. “custom_template” has higher precedence than “model” NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead. @param chat Pointer to a list of multiple llama_chat_message @param n_msg Number of llama_chat_message in this chat @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message. @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages) @param length The size of the allocated buffer @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
llama_context_default_params
llama_control_vector_apply
llama_copy_state_data
llama_decode
llama_dump_timing_info_yaml
llama_free
llama_free_model
llama_get_embeddings
llama_get_embeddings_ith
llama_get_embeddings_seq
llama_get_kv_cache_token_count
llama_get_kv_cache_used_cells
llama_get_logits
llama_get_logits_ith
llama_get_model
llama_get_model_tensor
llama_get_state_size
llama_get_timings
llama_grammar_accept_token
@details Accepts the sampled token into the grammar
llama_grammar_copy
llama_grammar_free
llama_grammar_init
llama_kv_cache_clear
llama_kv_cache_defrag
llama_kv_cache_seq_add
llama_kv_cache_seq_cp
llama_kv_cache_seq_div
llama_kv_cache_seq_keep
llama_kv_cache_seq_pos_max
llama_kv_cache_seq_rm
llama_kv_cache_update
llama_kv_cache_view_free
llama_kv_cache_view_init
llama_kv_cache_view_update
llama_load_model_from_file
llama_load_session_file
llama_log_set
llama_max_devices
llama_model_apply_lora_from_file
llama_model_default_params
llama_model_desc
llama_model_meta_count
llama_model_meta_key_by_index
llama_model_meta_val_str
llama_model_meta_val_str_by_index
llama_model_n_params
llama_model_quantize
llama_model_quantize_default_params
llama_model_size
llama_n_batch
llama_n_ctx
llama_n_ctx_train
llama_n_embd
llama_n_layer
llama_n_seq_max
llama_n_ubatch
llama_n_vocab
llama_new_context_with_model
llama_numa_init
llama_pooling_type
llama_print_system_info
llama_print_timings
llama_reset_timings
llama_rope_freq_scale_train
llama_rope_type
llama_sample_apply_guidance
@details Apply classifier-free guidance to the logits as described in academic paper “Stay on topic with Classifier-Free Guidance” https://arxiv.org/abs/2306.17806 @param logits Logits extracted from the original generation context. @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context. @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
llama_sample_entropy
@details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
llama_sample_grammar
@details Apply constraints from grammar
llama_sample_min_p
@details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
llama_sample_repetition_penalties
@details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
llama_sample_softmax
@details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
llama_sample_tail_free
@details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
llama_sample_temp
llama_sample_token
@details Randomly selects a token from the candidates based on their probabilities using the RNG of ctx.
llama_sample_token_greedy
@details Selects the token with the highest probability. Does not compute the token probabilities. Use llama_sample_softmax() instead.
llama_sample_token_mirostat
@details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. @param candidates A vector of llama_token_data containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. @param eta The learning rate used to update mu based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause mu to be updated more quickly, while a smaller learning rate will result in slower updates. @param m The number of tokens considered in the estimation of s_hat. This is an arbitrary value that is used to calculate s_hat, which in turn helps to calculate the value of k. In the paper, they use m = 100, but you can experiment with different values to see how it affects the performance of the algorithm. @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (2 * tau) and is updated in the algorithm based on the error between the target and observed surprisal.
llama_sample_token_mirostat_v2
@details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. @param candidates A vector of llama_token_data containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. @param eta The learning rate used to update mu based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause mu to be updated more quickly, while a smaller learning rate will result in slower updates. @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (2 * tau) and is updated in the algorithm based on the error between the target and observed surprisal.
llama_sample_top_k
@details Top-K sampling described in academic paper “The Curious Case of Neural Text Degeneration” https://arxiv.org/abs/1904.09751
llama_sample_top_p
@details Nucleus sampling described in academic paper “The Curious Case of Neural Text Degeneration” https://arxiv.org/abs/1904.09751
llama_sample_typical
@details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
llama_save_session_file
llama_set_abort_callback
llama_set_causal_attn
llama_set_n_threads
llama_set_rng_seed
llama_set_state_data
llama_split_path
@details Build a split GGUF final path for this chunk. llama_split_path(split_path, sizeof(split_path), “/models/ggml-model-q4_0”, 2, 4) => split_path = “/models/ggml-model-q4_0-00002-of-00004.gguf”
llama_split_prefix
@details Extract the path prefix from the split_path if and only if the split_no and split_count match. llama_split_prefix(split_prefix, 64, “/models/ggml-model-q4_0-00002-of-00004.gguf”, 2, 4) => split_prefix = “/models/ggml-model-q4_0”
llama_state_get_data
llama_state_get_size
llama_state_load_file
llama_state_save_file
llama_state_seq_get_data
llama_state_seq_get_size
llama_state_seq_load_file
llama_state_seq_save_file
llama_state_seq_set_data
llama_state_set_data
llama_supports_gpu_offload
llama_supports_mlock
llama_supports_mmap
llama_synchronize
llama_time_us
llama_token_bos
llama_token_cls
llama_token_eos
llama_token_eot
llama_token_get_score
llama_token_get_text
llama_token_get_type
llama_token_is_eog
llama_token_middle
llama_token_nl
llama_token_prefix
llama_token_sep
llama_token_suffix
llama_token_to_piece
llama_tokenize
@details Convert the provided text into tokens. @param tokens The tokens pointer must be large enough to hold the resulting tokens. @return Returns the number of tokens on success, no more than n_tokens_max @return Returns a negative number on failure - the number of tokens that would have been returned @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext. Does not insert a leading space.
llama_vocab_type

Type Aliases§

FILE
_IO_lock_t
__off64_t
__off_t
ggml_abort_callback
ggml_backend_sched_eval_callback
ggml_backend_type
ggml_binary_op_f32_t
ggml_cgraph_eval_order
ggml_custom1_op_f32_t
ggml_custom1_op_t
ggml_custom2_op_f32_t
ggml_custom2_op_t
ggml_custom3_op_f32_t
ggml_custom3_op_t
ggml_fp16_t
ggml_from_float_t
ggml_ftype
ggml_guid
ggml_guid_t
ggml_linesearch
ggml_log_callback
ggml_log_level
ggml_numa_strategy
ggml_object_type
ggml_op
ggml_op_pool
ggml_opt_callback
ggml_opt_result
ggml_opt_type
ggml_prec
ggml_sort_order
ggml_status
ggml_task_type
ggml_tensor_flag
ggml_to_float_t
ggml_type
ggml_unary_op
ggml_unary_op_f32_t
ggml_vec_dot_t
gguf_type
llama_beam_search_callback_fn_t
llama_ftype
llama_gretype
llama_model_kv_override_type
llama_pooling_type
llama_pos
llama_progress_callback
llama_rope_scaling_type
llama_rope_type
llama_seq_id
llama_split_mode
llama_token
llama_token_type
llama_vocab_type

Unions§

llama_model_kv_override__bindgen_ty_1