Expand description
§Gene GEM Correlation Analysis (GGCA)
Computes efficiently the correlation (Pearson, Spearman or Kendall) and the p-value (two-sided) between all the pairs from two datasets. It also supports CpG Site IDs.
§Installation
- Add crate to
Cargo.toml
:ggca = "1.0.0"
§Usage
Basic example:
ⓘ
use ggca::adjustment::AdjustmentMethod;
use ggca::analysis::Analysis;
use ggca::correlation::CorrelationMethod;
// File's paths
let gene_file_path = "mrna.csv".to_string();
let gem_file_path = "mirna.csv".to_string();
// Some parameters
let gem_contains_cpg = false;
let is_all_vs_all = true;
let keep_top_n = Some(10); // Keeps the top 10 of correlation (sorting by abs values)
let collect_gem_dataset = None; // Better performance. Keep small GEM files in memory
// Creates and run an analysis
let analysis = Analysis {
gene_file_path,
gem_file_path,
gem_contains_cpg: false,
correlation_method: CorrelationMethod::Pearson,
correlation_threshold: 0.7,
sort_buf_size: 2_000_000,
adjustment_method: AdjustmentMethod::BenjaminiHochberg,
is_all_vs_all,
collect_gem_dataset,
keep_top_n,
};
let (result, _total_combinations_count, number_of_elements_evaluated) = analysis.compute().unwrap();
println!(
"Number of elements -> {} of {} combinations evaluated",
result.len(),
number_of_elements_evaluated
);
for cor_p_value in result.iter() {
println!("{}", cor_p_value);
}
With CpG Site IDs:
ⓘ
use ggca::adjustment::AdjustmentMethod;
use ggca::analysis::Analysis;
use ggca::correlation::CorrelationMethod;
// Datasets's paths
let gene_file_path = "mrna.csv".to_string();
let gem_file_path = "methylation_with_cpgs.csv".to_string();
// Some parameters
let gem_contains_cpg = true; // Second column in df2 contains CpG Site IDs
let is_all_vs_all = false; // Only matching genes
let keep_top_n = Some(10); // Keeps the top 10 of correlation (sorting by abs values)
let collect_gem_dataset = None;
let analysis = Analysis {
gene_file_path,
gem_file_path,
gem_contains_cpg,
correlation_method: CorrelationMethod::Pearson,
correlation_threshold: 0.8,
sort_buf_size: 2_000_000,
adjustment_method: AdjustmentMethod::Bonferroni,
is_all_vs_all,
collect_gem_dataset,
keep_top_n,
};
let (result, _total_combinations_count, number_of_elements_evaluated) = analysis.compute().unwrap();
println!(
"Number of elements -> {} of {} combinations evaluated",
result.len(),
number_of_elements_evaluated
);
for cor_p_value in result.iter() {
println!("{}", cor_p_value);
}
§More examples
You can check the examples folder for more types of analysis!