Struct gfxmath_vec2::Vec2[][src]

#[repr(C)]pub struct Vec2<T> {
    pub x: T,
    pub y: T,
}

Fields

x: Ty: T

Implementations

impl<T> Vec2<T>[src]

pub fn new(x: T, y: T) -> Self[src]

pub fn as_ptr(&self) -> *const T[src]

pub fn as_mut_ptr(&mut self) -> *mut T[src]

pub fn as_slice(&self) -> &[T][src]

use gfxmath_vec2::Vec2;
 
let a = Vec2::<f32>::new(1.0, 2.0);
 
let a_slice = a.as_slice();
 
assert_eq!(1.0, a_slice[0]);
assert_eq!(2.0, a_slice[1]);

pub fn as_mut_slice(&mut self) -> &mut [T][src]

use gfxmath_vec2::Vec2;
 
let mut a = Vec2::<f32>::new(1.0, 2.0);
 
{
    let a_slice = a.as_mut_slice();
 
    assert_eq!(1.0, a_slice[0]);
    assert_eq!(2.0, a_slice[1]);
 
    a_slice[1] = 108.0;
    assert_eq!(108.0, a_slice[1]); 
}
 
a.x = 4.5;
assert_eq!(4.5, a.x);
 
let a_slice = a.as_mut_slice();
 
assert_eq!(4.5, a_slice[0]);
assert_eq!(108.0, a_slice[1]);

impl<T> Vec2<T> where
    T: Clone
[src]

pub fn all(val: T) -> Self[src]

use gfxmath_vec2::Vec2;
 
let v = Vec2::<f32>::all(2.5);
 
assert_eq!(2.5, v.x);
assert_eq!(2.5, v.y);

Trait Implementations

impl<T> Add<&'_ Vec2<T>> for &Vec2<T> where
    T: Add<Output = T> + Clone
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

impl<T> Add<&'_ Vec2<T>> for Vec2<T> where
    T: Add<Output = T> + Clone
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

impl<T> Add<T> for Vec2<T> where
    T: Add<Output = T> + Clone
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

fn add(self, rhs: T) -> Self::Output[src]

use gfxmath_vec2::Vec2;
 
let v = Vec2::<f32>::new(1.0, 2.0);

let res: Vec2<f32> = (v + 3.0).into();
 
assert_eq!(4.0, res.x);
assert_eq!(5.0, res.y);

impl<T> Add<T> for &Vec2<T> where
    T: Add<Output = T> + Clone
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

impl<T> Add<Vec2<T>> for Vec2<T> where
    T: Add<Output = T> + Clone
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

fn add(self, rhs: Vec2<T>) -> Self::Output[src]

use gfxmath_vec2::Vec2;
let a = Vec2::new(1.0, 2.0);
let b = Vec2::new(3.0, 4.0);
 
let res = &a + &b;
 
assert_eq!(1.0, a.x);
assert_eq!(2.0, a.y);
 
assert_eq!(3.0, b.x);
assert_eq!(4.0, b.y);
 
assert_eq!(4.0, res.x);
assert_eq!(6.0, res.y);

impl<T> Add<Vec2<T>> for &Vec2<T> where
    T: Add<Output = T> + Clone
[src]

type Output = Vec2<T>

The resulting type after applying the + operator.

impl<T> AddAssign<&'_ Vec2<T>> for Vec2<T> where
    T: AddAssign<T> + Copy
[src]

impl<T> AddAssign<(T, T)> for Vec2<T> where
    T: AddAssign
[src]

use gfxmath_vec2::Vec2;
 
let mut v1 = Vec2::new(1.0, 3.0);
let v2 = (2.0, 5.0);
v1 += v2;
 
assert_eq!(3.0, v1.x);
assert_eq!(8.0, v1.y);
 
let mut v1 = Vec2::new(9.0, 5.0);
let v2 = (3.5, 2.0);
 
*(&mut v1) += v2;
 
assert_eq!(12.5, v1.x);
assert_eq!(7.0, v1.y);

impl<T> AddAssign<T> for Vec2<T> where
    T: AddAssign<T> + Copy
[src]

fn add_assign(&mut self, rhs: T)[src]

use gfxmath_vec2::Vec2;
  
let mut v1 = Vec2::new(9.0, 5.0);
 
v1 += 2.0;
 
assert_eq!(11.0, v1.x);
assert_eq!(7.0, v1.y);

impl<T> AddAssign<Vec2<T>> for Vec2<T> where
    T: AddAssign<T> + Copy
[src]

fn add_assign(&mut self, rhs: Vec2<T>)[src]

use gfxmath_vec2::Vec2;
 
let mut v1 = Vec2::new(1.0, 3.0);
let v2 = Vec2::new(2.0, 5.0);
v1 += v2;
 
assert_eq!(3.0, v1.x);
assert_eq!(8.0, v1.y);
 
let mut v1 = Vec2::new(9.0, 5.0);
let v2 = Vec2::new(3.5, 2.0);
 
*(&mut v1) += v2;
 
assert_eq!(12.5, v1.x);
assert_eq!(7.0, v1.y);

impl<T: Clone> Clone for Vec2<T>[src]

impl<T: Debug> Debug for Vec2<T>[src]

impl<T> Div<T> for Vec2<T> where
    T: Div<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the / operator.

fn div(self, rhs: T) -> Self::Output[src]

Scalar division with vector

use gfxmath_vec2::Vec2;
 
let a = Vec2::<f32>::new(0.5, 2.5);
let b = a / 2.0;
 
assert_eq!( 0.25, b.x);
assert_eq!( 1.25, b.y);

impl<T> Div<T> for &Vec2<T> where
    T: Div<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the / operator.

impl<T> DivAssign<&'_ Vec2<T>> for Vec2<T> where
    T: DivAssign<T> + Copy
[src]

impl<T> DivAssign<(T, T)> for Vec2<T> where
    T: DivAssign
[src]

use gfxmath_vec2::Vec2;
 
let mut v1 = Vec2::new(1.0, 3.0);
let v2 = (2.0, 5.0);
v1 /= v2;
 
assert_eq!(0.5, v1.x);
assert_eq!(0.6, v1.y);
 
let mut v1 = Vec2::new(9.0, 5.0);
let v2 = (2.5, 2.0);
 
*(&mut v1) /= v2;
 
assert_eq!(3.6, v1.x);
assert_eq!(2.5, v1.y);

impl<T> DivAssign<T> for Vec2<T> where
    T: DivAssign<T> + Copy
[src]

fn div_assign(&mut self, rhs: T)[src]

use gfxmath_vec2::Vec2;
 
let mut v1 = Vec2::new(9.0, 5.0);
 
v1 /= 2.0;
 
assert_eq!(4.5, v1.x);
assert_eq!(2.5, v1.y);

impl<T> DivAssign<Vec2<T>> for Vec2<T> where
    T: DivAssign<T> + Copy
[src]

fn div_assign(&mut self, rhs: Vec2<T>)[src]

use gfxmath_vec2::Vec2;
 
let mut v1 = Vec2::new(1.0, 3.0);
let v2 = Vec2::new(2.0, 5.0);
v1 /= v2;
 
assert_eq!(0.5, v1.x);
assert_eq!(0.6, v1.y);
 
let mut v1 = Vec2::new(9.0, 5.0);
let v2 = Vec2::new(2.5, 2.0);
 
*(&mut v1) /= v2;
 
assert_eq!(3.6, v1.x);
assert_eq!(2.5, v1.y);

impl<T> Eq for Vec2<T> where
    T: PartialEq
[src]

impl<T> From<&'_ (T, T)> for Vec2<T> where
    T: Clone
[src]

use gfxmath_vec2::Vec2;
 
let v0 = (3.0, 2.0);
 
let v: Vec2<f32> = (&v0).into();
 
assert_eq!(3.0, v.x);
assert_eq!(2.0, v.y);

impl<T> From<(T, T)> for Vec2<T>[src]

use gfxmath_vec2::Vec2;
 
let v: Vec2<f32> = (3.0, 2.0).into();
 
assert_eq!(3.0, v.x);
assert_eq!(2.0, v.y);

impl Hash for Vec2<f32>[src]

impl Hash for Vec2<f64>[src]

impl Hash for Vec2<i32>[src]

impl Hash for Vec2<i64>[src]

impl Hash for Vec2<u32>[src]

impl Hash for Vec2<u64>[src]

impl<T> Mul<&'_ Vec2<T>> for &Vec2<T> where
    T: Mul<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<T> Mul<&'_ Vec2<T>> for Vec2<T> where
    T: Mul<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<T> Mul<T> for Vec2<T> where
    T: Mul<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

fn mul(self, rhs: T) -> Self::Output[src]

Scalar multiplication with vector

use gfxmath_vec2::Vec2;
 
let a = Vec2::<f32>::new(0.5, 2.5);
let b = Vec2::from(a * 2.0);
 
assert_eq!( 1.0, b.x);
assert_eq!( 5.0, b.y);

impl<T> Mul<T> for &Vec2<T> where
    T: Mul<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<T> Mul<Vec2<T>> for Vec2<T> where
    T: Mul<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

fn mul(self, rhs: Vec2<T>) -> Self::Output[src]

use gfxmath_vec2::Vec2;
 
let mut a = Vec2::<f32>::new(1.5, 2.5);
let b = Vec2::<f32>::new(4.0, 2.0);
let c = &a * &b;
 
a.x = 2.0;
 
assert_eq!( 6.0, c.x);
assert_eq!( 5.0, c.y);
 
let c = a * b;

assert_eq!( 8.0, c.x);
assert_eq!( 5.0, c.y);

impl<T> Mul<Vec2<T>> for &Vec2<T> where
    T: Mul<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the * operator.

impl<T> MulAssign<&'_ Vec2<T>> for Vec2<T> where
    T: MulAssign<T> + Copy
[src]

impl<T> MulAssign<(T, T)> for Vec2<T> where
    T: MulAssign
[src]

use gfxmath_vec2::Vec2;
 
let mut v1 = Vec2::new(1.0, 3.0);
let v2 = (2.0, 5.0);
v1 *= v2;
 
assert_eq!(2.0, v1.x);
assert_eq!(15.0, v1.y);
 
let mut v1 = Vec2::new(9.0, 5.0);
let v2 = (3.5, 2.0);
 
*(&mut v1) *= v2;
 
assert_eq!(31.5, v1.x);
assert_eq!(10.0, v1.y);

impl<T> MulAssign<T> for Vec2<T> where
    T: MulAssign<T> + Copy
[src]

fn mul_assign(&mut self, rhs: T)[src]

use gfxmath_vec2::Vec2;
  
let mut v1 = Vec2::new(9.0, 5.0);
 
v1 *= 2.0;
 
assert_eq!(18.0, v1.x);
assert_eq!(10.0, v1.y);

impl<T> MulAssign<Vec2<T>> for Vec2<T> where
    T: MulAssign<T> + Copy
[src]

fn mul_assign(&mut self, rhs: Vec2<T>)[src]

use gfxmath_vec2::Vec2;
 
let mut v1 = Vec2::new(1.0, 3.0);
let v2 = Vec2::new(2.0, 5.0);
v1 *= v2;
 
assert_eq!(2.0, v1.x);
assert_eq!(15.0, v1.y);
 
let mut v1 = Vec2::new(9.0, 5.0);
let v2 = Vec2::new(3.5, 2.0);
 
*(&mut v1) *= v2;
 
assert_eq!(31.5, v1.x);
assert_eq!(10.0, v1.y);

impl<T> Neg for Vec2<T> where
    T: Neg<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

fn neg(self) -> Self::Output[src]

Scalar multiplication with vector

use gfxmath_vec2::Vec2;

let a = Vec2::<f32>::new(2.0, 6.0);
 
let res = -a;

assert_eq!(-2.0, res.x);
assert_eq!(-6.0, res.y);

impl<T> Neg for &Vec2<T> where
    T: Neg<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl Norm for Vec2<f32>[src]

type Output = Option<Vec2<f32>>

fn norm(self) -> Self::Output[src]

use gfxmath_vec2::ops::Norm;
use gfxmath_vec2::Vec2;
 
let a = Vec2::<f32>::new(3.0, 4.0);
let an = a.norm().unwrap();
 
assert_eq!(3.0/5.0, an.x);
assert_eq!(4.0/5.0, an.y);

impl Norm for &Vec2<f32>[src]

type Output = Option<Vec2<f32>>

impl Norm for Vec2<f64>[src]

type Output = Option<Vec2<f64>>

fn norm(self) -> Self::Output[src]

use gfxmath_vec2::ops::Norm;
use gfxmath_vec2::Vec2;
 
let a = Vec2::<f64>::new(3.0, 4.0);
let an = a.norm().unwrap();
 
assert_eq!(3.0/5.0, an.x);
assert_eq!(4.0/5.0, an.y);

impl Norm for &Vec2<f64>[src]

type Output = Option<Vec2<f64>>

impl<T: PartialEq> PartialEq<Vec2<T>> for Vec2<T>[src]

impl<T> StructuralPartialEq for Vec2<T>[src]

impl<T: Sub<Output = T> + Copy> Sub<&'_ Vec2<T>> for &Vec2<T>[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<T: Sub<Output = T> + Copy> Sub<&'_ Vec2<T>> for Vec2<T>[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<T> Sub<T> for Vec2<T> where
    T: Sub<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

fn sub(self, rhs: T) -> Self::Output[src]

use gfxmath_vec2::Vec2;
 
let v = Vec2::new(1.0, 2.0);

let res: Vec2<f32> = (v - 3.0).into();
 
assert_eq!(-2.0, res.x);
assert_eq!(-1.0, res.y);

impl<T> Sub<T> for &Vec2<T> where
    T: Sub<Output = T> + Copy
[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<T: Sub<Output = T> + Copy> Sub<Vec2<T>> for Vec2<T>[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

fn sub(self, rhs: Vec2<T>) -> Self::Output[src]

use gfxmath_vec2::Vec2;
 
let mut a = Vec2::<f32>::new(0.5, 2.5);
let b = Vec2::<f32>::new(1.5, 2.5);
let c = Vec2::from(&a - &b);
 
a.x = 1.0;
 
assert_eq!(-1.0, c.x);
assert_eq!( 0.0, c.y);
 
let c2 = Vec2::from(a - b);

assert_eq!(-0.5, c2.x);
assert_eq!( 0.0, c2.y);

impl<T: Sub<Output = T> + Copy> Sub<Vec2<T>> for &Vec2<T>[src]

type Output = Vec2<T>

The resulting type after applying the - operator.

impl<T> SubAssign<&'_ Vec2<T>> for Vec2<T> where
    T: SubAssign<T> + Copy
[src]

impl<T> SubAssign<(T, T)> for Vec2<T> where
    T: SubAssign
[src]

use gfxmath_vec2::Vec2;
 
let mut v1 = Vec2::new(1.0, 3.0);
let v2 = (2.0, 5.0);
v1 -= v2;
 
assert_eq!(-1.0, v1.x);
assert_eq!(-2.0, v1.y);
 
let mut v1 = Vec2::new(9.0, 5.0);
let v2 = (3.5, 2.0);
 
*(&mut v1) -= v2;
 
assert_eq!(5.5, v1.x);
assert_eq!(3.0, v1.y);

impl<T> SubAssign<T> for Vec2<T> where
    T: SubAssign<T> + Copy
[src]

fn sub_assign(&mut self, rhs: T)[src]

use gfxmath_vec2::Vec2;
 
let mut v1 = Vec2::new(1.0, 3.0);
v1 -= 2.0;
 
assert_eq!(-1.0, v1.x);
assert_eq!( 1.0, v1.y);

impl<T> SubAssign<Vec2<T>> for Vec2<T> where
    T: SubAssign<T> + Copy
[src]

fn sub_assign(&mut self, rhs: Vec2<T>)[src]

use gfxmath_vec2::Vec2;
 
let mut v1 = Vec2::new(1.0, 3.0);
let v2 = Vec2::new(2.0, 5.0);
v1 -= v2;
 
assert_eq!(-1.0, v1.x);
assert_eq!(-2.0, v1.y);
 
let mut v1 = Vec2::new(9.0, 5.0);
let v2 = Vec2::new(3.5, 2.0);
 
*(&mut v1) -= v2;
 
assert_eq!(5.5, v1.x);
assert_eq!(3.0, v1.y);

Auto Trait Implementations

impl<T> RefUnwindSafe for Vec2<T> where
    T: RefUnwindSafe

impl<T> Send for Vec2<T> where
    T: Send

impl<T> Sync for Vec2<T> where
    T: Sync

impl<T> Unpin for Vec2<T> where
    T: Unpin

impl<T> UnwindSafe for Vec2<T> where
    T: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.