1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
use crate::array::*;
use arrow_array::OffsetSizeTrait;
use geo::Simplify as _Simplify;

/// Simplifies a geometry.
///
/// The [Ramer–Douglas–Peucker
/// algorithm](https://en.wikipedia.org/wiki/Ramer–Douglas–Peucker_algorithm) simplifies a
/// linestring. Polygons are simplified by running the RDP algorithm on all their constituent
/// rings. This may result in invalid Polygons, and has no guarantee of preserving topology.
///
/// Multi* objects are simplified by simplifying all their constituent geometries individually.
///
/// An epsilon less than or equal to zero will return an unaltered version of the geometry.
pub trait Simplify {
    /// Returns the simplified representation of a geometry, using the [Ramer–Douglas–Peucker](https://en.wikipedia.org/wiki/Ramer–Douglas–Peucker_algorithm) algorithm
    ///
    /// # Examples
    ///
    /// ```
    /// use geoarrow2::algorithm::geo::Simplify;
    /// use geoarrow2::array::LineStringArray;
    /// use geoarrow2::trait_::GeoArrayAccessor;
    /// use geo::line_string;
    ///
    /// let line_string = line_string![
    ///     (x: 0.0, y: 0.0),
    ///     (x: 5.0, y: 4.0),
    ///     (x: 11.0, y: 5.5),
    ///     (x: 17.3, y: 3.2),
    ///     (x: 27.8, y: 0.1),
    /// ];
    /// let line_string_array: LineStringArray<i32> = vec![line_string].into();
    ///
    /// let simplified_array = line_string_array.simplify(&1.0);
    ///
    /// let expected = line_string![
    ///     (x: 0.0, y: 0.0),
    ///     (x: 5.0, y: 4.0),
    ///     (x: 11.0, y: 5.5),
    ///     (x: 27.8, y: 0.1),
    /// ];
    ///
    /// assert_eq!(expected, simplified_array.value_as_geo(0))
    /// ```
    fn simplify(&self, epsilon: &f64) -> Self;
}

// Note: this can't (easily) be parameterized in the macro because PointArray is not generic over O
impl Simplify for PointArray {
    fn simplify(&self, _epsilon: &f64) -> Self {
        self.clone()
    }
}

/// Implementation that returns the identity
macro_rules! identity_impl {
    ($type:ty) => {
        impl<O: OffsetSizeTrait> Simplify for $type {
            fn simplify(&self, _epsilon: &f64) -> Self {
                self.clone()
            }
        }
    };
}

identity_impl!(MultiPointArray<O>);

/// Implementation that iterates over geo objects
macro_rules! iter_geo_impl {
    ($type:ty, $geo_type:ty) => {
        impl<O: OffsetSizeTrait> Simplify for $type {
            fn simplify(&self, epsilon: &f64) -> Self {
                let output_geoms: Vec<Option<$geo_type>> = self
                    .iter_geo()
                    .map(|maybe_g| maybe_g.map(|geom| geom.simplify(epsilon)))
                    .collect();

                output_geoms.into()
            }
        }
    };
}

iter_geo_impl!(LineStringArray<O>, geo::LineString);
iter_geo_impl!(PolygonArray<O>, geo::Polygon);
iter_geo_impl!(MultiLineStringArray<O>, geo::MultiLineString);
iter_geo_impl!(MultiPolygonArray<O>, geo::MultiPolygon);

impl<O: OffsetSizeTrait> Simplify for GeometryArray<O> {
    fn simplify(&self, epsilon: &f64) -> Self {
        use GeometryArray::*;

        match self {
            Point(arr) => Point(arr.simplify(epsilon)),
            LineString(arr) => LineString(arr.simplify(epsilon)),
            Polygon(arr) => Polygon(arr.simplify(epsilon)),
            MultiPoint(arr) => MultiPoint(arr.simplify(epsilon)),
            MultiLineString(arr) => MultiLineString(arr.simplify(epsilon)),
            MultiPolygon(arr) => MultiPolygon(arr.simplify(epsilon)),
            Rect(arr) => Rect(arr.clone()),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::array::{LineStringArray, PolygonArray};
    use crate::trait_::GeoArrayAccessor;
    use geo::{line_string, polygon};

    #[test]
    fn rdp_test() {
        let input_geom = line_string![
            (x: 0.0, y: 0.0 ),
            (x: 5.0, y: 4.0 ),
            (x: 11.0, y: 5.5 ),
            (x: 17.3, y: 3.2 ),
            (x: 27.8, y: 0.1 ),
        ];
        let input_array: LineStringArray<i64> = vec![input_geom].into();
        let result_array = input_array.simplify(&1.0);

        let expected = line_string![
            ( x: 0.0, y: 0.0 ),
            ( x: 5.0, y: 4.0 ),
            ( x: 11.0, y: 5.5 ),
            ( x: 27.8, y: 0.1 ),
        ];

        assert_eq!(expected, result_array.get_as_geo(0).unwrap());
    }

    #[test]
    fn polygon() {
        let input_geom = polygon![
            (x: 0., y: 0.),
            (x: 0., y: 10.),
            (x: 5., y: 11.),
            (x: 10., y: 10.),
            (x: 10., y: 0.),
            (x: 0., y: 0.),
        ];
        let input_array: PolygonArray<i64> = vec![input_geom].into();
        let result_array = input_array.simplify(&2.0);

        let expected = polygon![
            (x: 0., y: 0.),
            (x: 0., y: 10.),
            (x: 10., y: 10.),
            (x: 10., y: 0.),
            (x: 0., y: 0.),
        ];

        assert_eq!(expected, result_array.get_as_geo(0).unwrap());
    }
}