1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
use crate::algorithm::geo::{AffineOps, Center, Centroid};
use crate::array::MultiPointArray;
use crate::array::*;
use arrow_array::{Float64Array, OffsetSizeTrait};
use geo::AffineTransform;

/// Rotate geometries around a point by an angle, in degrees.
///
/// Positive angles are counter-clockwise, and negative angles are clockwise rotations.
///
/// ## Performance
///
/// If you will be performing multiple transformations, like
/// [`Scale`](crate::algorithm::geo::Scale), [`Skew`](crate::algorithm::geo::Skew),
/// [`Translate`](crate::algorithm::geo::Translate), or [`Rotate`](crate::algorithm::geo::Rotate),
/// it is more efficient to compose the transformations and apply them as a single operation using
/// the [`AffineOps`](crate::algorithm::geo::AffineOps) trait.
pub trait Rotate<DegreesT> {
    /// Rotate a geometry around its [centroid](Centroid) by an angle, in degrees
    ///
    /// Positive angles are counter-clockwise, and negative angles are clockwise rotations.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Rotate;
    /// use geo::line_string;
    /// use approx::assert_relative_eq;
    ///
    /// let line_string = line_string![
    ///     (x: 0.0, y: 0.0),
    ///     (x: 5.0, y: 5.0),
    ///     (x: 10.0, y: 10.0),
    /// ];
    ///
    /// let rotated = line_string.rotate_around_centroid(-45.0);
    ///
    /// let expected = line_string![
    ///     (x: -2.071067811865475, y: 5.0),
    ///     (x: 5.0, y: 5.0),
    ///     (x: 12.071067811865476, y: 5.0),
    /// ];
    ///
    /// assert_relative_eq!(expected, rotated);
    /// ```
    #[must_use]
    fn rotate_around_centroid(&self, degrees: &DegreesT) -> Self;

    // /// Mutable version of [`Self::rotate_around_centroid`]
    // fn rotate_around_centroid_mut(&mut self, degrees: f64);

    /// Rotate a geometry around the center of its [bounding
    /// box](crate::algorithm::geo::BoundingRect) by an angle, in degrees.
    ///
    /// Positive angles are counter-clockwise, and negative angles are clockwise rotations.
    ///
    #[must_use]
    fn rotate_around_center(&self, degrees: &DegreesT) -> Self;

    // /// Mutable version of [`Self::rotate_around_center`]
    // fn rotate_around_center_mut(&mut self, degrees: f64);

    /// Rotate a Geometry around an arbitrary point by an angle, given in degrees
    ///
    /// Positive angles are counter-clockwise, and negative angles are clockwise rotations.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Rotate;
    /// use geo::{line_string, point};
    ///
    /// let ls = line_string![
    ///     (x: 0.0, y: 0.0),
    ///     (x: 5.0, y: 5.0),
    ///     (x: 10.0, y: 10.0)
    /// ];
    ///
    /// let rotated = ls.rotate_around_point(
    ///     -45.0,
    ///     point!(x: 10.0, y: 0.0),
    /// );
    ///
    /// assert_eq!(rotated, line_string![
    ///     (x: 2.9289321881345245, y: 7.071067811865475),
    ///     (x: 10.0, y: 7.0710678118654755),
    ///     (x: 17.071067811865476, y: 7.0710678118654755)
    /// ]);
    /// ```
    #[must_use]
    fn rotate_around_point(&self, degrees: &DegreesT, point: geo::Point) -> Self;

    // /// Mutable version of [`Self::rotate_around_point`]
    // fn rotate_around_point_mut(&mut self, degrees: f64, point: Point<f64>);
}

// ┌────────────────────────────────┐
// │ Implementations for RHS arrays │
// └────────────────────────────────┘

// Note: this can't (easily) be parameterized in the macro because PointArray is not generic over O
impl Rotate<Float64Array> for PointArray {
    fn rotate_around_centroid(&self, degrees: &Float64Array) -> Self {
        let centroids = self.centroid();
        let transforms: Vec<AffineTransform> = centroids
            .iter_geo_values()
            .zip(degrees.values().iter())
            .map(|(point, angle)| AffineTransform::rotate(*angle, point))
            .collect();
        self.affine_transform(&transforms)
    }

    fn rotate_around_center(&self, degrees: &Float64Array) -> Self {
        let centers = self.center();
        let transforms: Vec<AffineTransform> = centers
            .iter_geo_values()
            .zip(degrees.values().iter())
            .map(|(point, angle)| AffineTransform::rotate(*angle, point))
            .collect();
        self.affine_transform(&transforms)
    }

    fn rotate_around_point(&self, degrees: &Float64Array, point: geo::Point) -> Self {
        let transforms: Vec<AffineTransform> = degrees
            .values()
            .iter()
            .map(|degrees| AffineTransform::rotate(*degrees, point))
            .collect();
        self.affine_transform(&transforms)
    }
}

/// Implementation that iterates over geo objects
macro_rules! iter_geo_impl {
    ($type:ty) => {
        impl<O: OffsetSizeTrait> Rotate<Float64Array> for $type {
            fn rotate_around_centroid(&self, degrees: &Float64Array) -> $type {
                let centroids = self.centroid();
                let transforms: Vec<AffineTransform> = centroids
                    .iter_geo_values()
                    .zip(degrees.values().iter())
                    .map(|(point, angle)| AffineTransform::rotate(*angle, point))
                    .collect();
                self.affine_transform(&transforms)
            }

            fn rotate_around_center(&self, degrees: &Float64Array) -> Self {
                let centers = self.center();
                let transforms: Vec<AffineTransform> = centers
                    .iter_geo_values()
                    .zip(degrees.values().iter())
                    .map(|(point, angle)| AffineTransform::rotate(*angle, point))
                    .collect();
                self.affine_transform(&transforms)
            }

            fn rotate_around_point(&self, degrees: &Float64Array, point: geo::Point) -> Self {
                let transforms: Vec<AffineTransform> = degrees
                    .values()
                    .iter()
                    .map(|degrees| AffineTransform::rotate(*degrees, point))
                    .collect();
                self.affine_transform(&transforms)
            }
        }
    };
}

iter_geo_impl!(LineStringArray<O>);
iter_geo_impl!(PolygonArray<O>);
iter_geo_impl!(MultiPointArray<O>);
iter_geo_impl!(MultiLineStringArray<O>);
iter_geo_impl!(MultiPolygonArray<O>);
iter_geo_impl!(WKBArray<O>);

impl<O: OffsetSizeTrait> Rotate<Float64Array> for GeometryArray<O> {
    crate::geometry_array_delegate_impl! {
        fn rotate_around_centroid(&self, degrees: &Float64Array) -> Self;
        fn rotate_around_center(&self, degrees: &Float64Array) -> Self;
        fn rotate_around_point(&self, degrees: &Float64Array, point: geo::Point) -> Self;
    }
}

// ┌─────────────────────────────────┐
// │ Implementations for RHS scalars │
// └─────────────────────────────────┘

// Note: this can't (easily) be parameterized in the macro because PointArray is not generic over O
impl Rotate<f64> for PointArray {
    fn rotate_around_centroid(&self, degrees: &f64) -> Self {
        let centroids = self.centroid();
        let transforms: Vec<AffineTransform> = centroids
            .iter_geo_values()
            .map(|point| AffineTransform::rotate(*degrees, point))
            .collect();
        self.affine_transform(&transforms)
    }

    fn rotate_around_center(&self, degrees: &f64) -> Self {
        let centers = self.center();
        let transforms: Vec<AffineTransform> = centers
            .iter_geo_values()
            .map(|point| AffineTransform::rotate(*degrees, point))
            .collect();
        self.affine_transform(&transforms)
    }

    fn rotate_around_point(&self, degrees: &f64, point: geo::Point) -> Self {
        let transform = AffineTransform::rotate(*degrees, point);
        self.affine_transform(&transform)
    }
}

/// Implementation that iterates over geo objects
macro_rules! iter_geo_impl_scalar {
    ($type:ty) => {
        impl<O: OffsetSizeTrait> Rotate<f64> for $type {
            fn rotate_around_centroid(&self, degrees: &f64) -> $type {
                let centroids = self.centroid();
                let transforms: Vec<AffineTransform> = centroids
                    .iter_geo_values()
                    .map(|point| AffineTransform::rotate(*degrees, point))
                    .collect();
                self.affine_transform(&transforms)
            }

            fn rotate_around_center(&self, degrees: &f64) -> Self {
                let centers = self.center();
                let transforms: Vec<AffineTransform> = centers
                    .iter_geo_values()
                    .map(|point| AffineTransform::rotate(*degrees, point))
                    .collect();
                self.affine_transform(&transforms)
            }

            fn rotate_around_point(&self, degrees: &f64, point: geo::Point) -> Self {
                let transform = AffineTransform::rotate(*degrees, point);
                self.affine_transform(&transform)
            }
        }
    };
}

iter_geo_impl_scalar!(LineStringArray<O>);
iter_geo_impl_scalar!(PolygonArray<O>);
iter_geo_impl_scalar!(MultiPointArray<O>);
iter_geo_impl_scalar!(MultiLineStringArray<O>);
iter_geo_impl_scalar!(MultiPolygonArray<O>);
iter_geo_impl_scalar!(WKBArray<O>);

impl<O: OffsetSizeTrait> Rotate<f64> for GeometryArray<O> {
    crate::geometry_array_delegate_impl! {
        fn rotate_around_centroid(&self, degrees: &f64) -> Self;
        fn rotate_around_center(&self, degrees: &f64) -> Self;
        fn rotate_around_point(&self, degrees: &f64, point: geo::Point) -> Self;
    }
}