1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
use crate::array::*;
use arrow_array::OffsetSizeTrait;
use geo::{AffineTransform, MapCoords};

/// Apply an [`AffineTransform`] like [`scale`](AffineTransform::scale),
/// [`skew`](AffineTransform::skew), or [`rotate`](AffineTransform::rotate) to geometries.
///
/// Multiple transformations can be composed in order to be efficiently applied in a single
/// operation. See [`AffineTransform`] for more on how to build up a transformation.
///
/// If you are not composing operations, traits that leverage this same machinery exist which might
/// be more readable. See: [`Scale`](crate::algorithm::geo::Scale),
/// [`Translate`](crate::algorithm::geo::Translate), [`Rotate`](crate::algorithm::geo::Rotate), and
/// [`Skew`](crate::algorithm::geo::Skew).
///
/// # Examples
/// ## Build up transforms by beginning with a constructor, then chaining mutation operations
/// ```
/// use geo::{AffineOps, AffineTransform};
/// use geo::{line_string, BoundingRect, Point, LineString};
/// use approx::assert_relative_eq;
///
/// let ls: LineString = line_string![
///     (x: 0.0f64, y: 0.0f64),
///     (x: 0.0f64, y: 10.0f64),
/// ];
/// let center = ls.bounding_rect().unwrap().center();
///
/// let transform = AffineTransform::skew(40.0, 40.0, center).rotated(45.0, center);
///
/// let skewed_rotated = ls.affine_transform(&transform);
///
/// assert_relative_eq!(skewed_rotated, line_string![
///     (x: 0.5688687f64, y: 4.4311312),
///     (x: -0.5688687, y: 5.5688687)
/// ], max_relative = 1.0);
/// ```
pub trait AffineOps<Rhs> {
    /// Apply `transform` immutably, outputting a new geometry.
    #[must_use]
    fn affine_transform(&self, transform: &Rhs) -> Self;

    // TODO: add COW API for affine_transform_mut
    //
    // /// Apply `transform` to mutate `self`.
    // fn affine_transform_mut(&mut self, transform: &AffineTransform<T>);
}

// ┌─────────────────────────────────┐
// │ Implementations for RHS scalars │
// └─────────────────────────────────┘

// Note: this can't (easily) be parameterized in the macro because PointArray is not generic over O
impl AffineOps<AffineTransform> for PointArray {
    fn affine_transform(&self, transform: &AffineTransform) -> Self {
        let output_geoms: Vec<Option<geo::Point>> = self
            .iter_geo()
            .map(|maybe_g| maybe_g.map(|geom| geom.map_coords(|coord| transform.apply(coord))))
            .collect();

        output_geoms.into()
    }
}

/// Implementation that iterates over geo objects
macro_rules! iter_geo_impl {
    ($type:ty, $geo_type:ty) => {
        impl<O: OffsetSizeTrait> AffineOps<AffineTransform> for $type {
            fn affine_transform(&self, transform: &AffineTransform) -> Self {
                let output_geoms: Vec<Option<$geo_type>> = self
                    .iter_geo()
                    .map(|maybe_g| {
                        maybe_g.map(|geom| geom.map_coords(|coord| transform.apply(coord)))
                    })
                    .collect();

                output_geoms.into()
            }
        }
    };
}

iter_geo_impl!(LineStringArray<O>, geo::LineString);
iter_geo_impl!(PolygonArray<O>, geo::Polygon);
iter_geo_impl!(MultiLineStringArray<O>, geo::MultiLineString);
iter_geo_impl!(MultiPolygonArray<O>, geo::MultiPolygon);
iter_geo_impl!(WKBArray<O>, geo::Geometry);

impl<O: OffsetSizeTrait> AffineOps<AffineTransform> for MultiPointArray<O> {
    fn affine_transform(&self, transform: &AffineTransform) -> Self {
        let output_geoms: Vec<Option<geo::MultiPoint>> = self
            .iter_geo()
            .map(|maybe_g| maybe_g.map(|geom| geom.map_coords(|coord| transform.apply(coord))))
            .collect();

        output_geoms.into()
    }
}

impl<O: OffsetSizeTrait> AffineOps<AffineTransform> for GeometryArray<O> {
    crate::geometry_array_delegate_impl! {
        fn affine_transform(&self, transform: &AffineTransform) -> Self;
    }
}

// ┌────────────────────────────────┐
// │ Implementations for RHS arrays │
// └────────────────────────────────┘

// Note: this can't (easily) be parameterized in the macro because PointArray is not generic over O
impl AffineOps<Vec<AffineTransform>> for PointArray {
    fn affine_transform(&self, transform: &Vec<AffineTransform>) -> Self {
        let output_geoms: Vec<Option<geo::Point>> = self
            .iter_geo()
            .zip(transform.iter())
            .map(|(maybe_g, transform)| {
                maybe_g.map(|geom| geom.map_coords(|coord| transform.apply(coord)))
            })
            .collect();

        output_geoms.into()
    }
}

/// Implementation that iterates over geo objects
macro_rules! iter_geo_impl {
    ($type:ty, $geo_type:ty) => {
        impl<O: OffsetSizeTrait> AffineOps<Vec<AffineTransform>> for $type {
            fn affine_transform(&self, transform: &Vec<AffineTransform>) -> Self {
                let output_geoms: Vec<Option<$geo_type>> = self
                    .iter_geo()
                    .zip(transform.iter())
                    .map(|(maybe_g, transform)| {
                        maybe_g.map(|geom| geom.map_coords(|coord| transform.apply(coord)))
                    })
                    .collect();

                output_geoms.into()
            }
        }
    };
}

iter_geo_impl!(LineStringArray<O>, geo::LineString);
iter_geo_impl!(PolygonArray<O>, geo::Polygon);
iter_geo_impl!(MultiLineStringArray<O>, geo::MultiLineString);
iter_geo_impl!(MultiPolygonArray<O>, geo::MultiPolygon);
iter_geo_impl!(WKBArray<O>, geo::Geometry);

impl<O: OffsetSizeTrait> AffineOps<Vec<AffineTransform>> for MultiPointArray<O> {
    fn affine_transform(&self, transform: &Vec<AffineTransform>) -> Self {
        let output_geoms: Vec<Option<geo::MultiPoint>> = self
            .iter_geo()
            .zip(transform.iter())
            .map(|(maybe_g, transform)| {
                maybe_g.map(|geom| geom.map_coords(|coord| transform.apply(coord)))
            })
            .collect();

        output_geoms.into()
    }
}

impl<O: OffsetSizeTrait> AffineOps<Vec<AffineTransform>> for GeometryArray<O> {
    crate::geometry_array_delegate_impl! {
        fn affine_transform(&self, transform: &Vec<AffineTransform>) -> Self;
    }
}