Struct geo::geometry::MultiPoint

source ·
pub struct MultiPoint<T = f64>(pub Vec<Point<T>>)
where
    T: CoordNum;
Expand description

A collection of Points. Can be created from a Vec of Points, or from an Iterator which yields Points. Iterating over this object yields the component Points.

Semantics

The interior and the boundary are the union of the interior and the boundary of the constituent points. In particular, the boundary of a MultiPoint is always empty.

Examples

Iterating over a MultiPoint yields the Points inside.

use geo_types::{MultiPoint, Point};
let points: MultiPoint<_> = vec![(0., 0.), (1., 2.)].into();
for point in points {
    println!("Point x = {}, y = {}", point.x(), point.y());
}

Tuple Fields§

§0: Vec<Point<T>>

Implementations§

source§

impl<T> MultiPoint<T>where T: CoordNum,

source

pub fn new(value: Vec<Point<T>>) -> MultiPoint<T>

source

pub fn len(&self) -> usize

source

pub fn is_empty(&self) -> bool

source

pub fn iter(&self) -> impl Iterator<Item = &Point<T>>

source

pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut Point<T>>

Trait Implementations§

source§

impl<T> AbsDiffEq for MultiPoint<T>where T: AbsDiffEq<Epsilon = T> + CoordNum, <T as AbsDiffEq>::Epsilon: Copy,

source§

fn abs_diff_eq( &self, other: &MultiPoint<T>, epsilon: <MultiPoint<T> as AbsDiffEq>::Epsilon ) -> bool

Equality assertion with an absolute limit.

Examples
use geo_types::MultiPoint;
use geo_types::point;

let a = MultiPoint::new(vec![point![x: 0., y: 0.], point![x: 10., y: 10.]]);
let b = MultiPoint::new(vec![point![x: 0., y: 0.], point![x: 10.001, y: 10.]]);

approx::abs_diff_eq!(a, b, epsilon=0.1);
§

type Epsilon = T

Used for specifying relative comparisons.
source§

fn default_epsilon() -> <MultiPoint<T> as AbsDiffEq>::Epsilon

The default tolerance to use when testing values that are close together. Read more
§

fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of [AbsDiffEq::abs_diff_eq].
source§

impl<T> Area<T> for MultiPoint<T>where T: CoordNum,

source§

fn signed_area(&self) -> T

source§

fn unsigned_area(&self) -> T

source§

impl<T> BoundingRect<T> for MultiPoint<T>where T: CoordNum,

source§

fn bounding_rect(&self) -> Self::Output

Return the BoundingRect for a MultiPoint

§

type Output = Option<Rect<T>>

source§

impl<T> Centroid for MultiPoint<T>where T: GeoFloat,

source§

fn centroid(&self) -> Self::Output

The Centroid of a MultiPoint is the mean of all Points

Example
use geo::Centroid;
use geo::{MultiPoint, Point};

let empty: Vec<Point> = Vec::new();
let empty_multi_points: MultiPoint<_> = empty.into();
assert_eq!(empty_multi_points.centroid(), None);

let points: MultiPoint<_> = vec![(5., 1.), (1., 3.), (3., 2.)].into();
assert_eq!(points.centroid(), Some(Point::new(3., 2.)));
§

type Output = Option<Point<T>>

source§

impl<T> ChamberlainDuquetteArea<T> for MultiPoint<T>where T: CoordFloat,

source§

impl<T> Clone for MultiPoint<T>where T: Clone + CoordNum,

source§

fn clone(&self) -> MultiPoint<T>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<F: GeoFloat> ClosestPoint<F> for MultiPoint<F>

source§

fn closest_point(&self, p: &Point<F>) -> Closest<F>

Find the closest point between self and p.
source§

impl<T> ConcaveHull for MultiPoint<T>where T: GeoFloat + RTreeNum,

§

type Scalar = T

source§

fn concave_hull(&self, concavity: T) -> Polygon<T>

source§

impl<T> Contains<Coord<T>> for MultiPoint<T>where T: CoordNum,

source§

fn contains(&self, coord: &Coord<T>) -> bool

source§

impl<T> Contains<GeometryCollection<T>> for MultiPoint<T>where T: GeoFloat,

source§

fn contains(&self, target: &GeometryCollection<T>) -> bool

source§

impl<T> Contains<Line<T>> for MultiPoint<T>where T: GeoFloat,

source§

fn contains(&self, target: &Line<T>) -> bool

source§

impl<T> Contains<LineString<T>> for MultiPoint<T>where T: GeoFloat,

source§

fn contains(&self, target: &LineString<T>) -> bool

source§

impl<T> Contains<MultiLineString<T>> for MultiPoint<T>where T: GeoFloat,

source§

fn contains(&self, target: &MultiLineString<T>) -> bool

source§

impl<T> Contains<MultiPoint<T>> for Geometry<T>where T: GeoFloat,

source§

fn contains(&self, multi_point: &MultiPoint<T>) -> bool

source§

impl<T> Contains<MultiPoint<T>> for GeometryCollection<T>where T: GeoFloat,

source§

fn contains(&self, target: &MultiPoint<T>) -> bool

source§

impl<T> Contains<MultiPoint<T>> for Line<T>where T: GeoFloat,

source§

fn contains(&self, target: &MultiPoint<T>) -> bool

source§

impl<T> Contains<MultiPoint<T>> for LineString<T>where T: GeoFloat,

source§

fn contains(&self, target: &MultiPoint<T>) -> bool

source§

impl<T> Contains<MultiPoint<T>> for MultiLineString<T>where T: GeoFloat,

source§

fn contains(&self, target: &MultiPoint<T>) -> bool

source§

impl<T: GeoNum> Contains<MultiPoint<T>> for MultiPolygon<T>

source§

fn contains(&self, rhs: &MultiPoint<T>) -> bool

source§

impl<T> Contains<MultiPoint<T>> for Point<T>where T: CoordNum,

source§

fn contains(&self, multi_point: &MultiPoint<T>) -> bool

source§

impl<T> Contains<MultiPoint<T>> for Polygon<T>where T: GeoFloat,

source§

fn contains(&self, target: &MultiPoint<T>) -> bool

source§

impl<T> Contains<MultiPoint<T>> for Rect<T>where T: GeoFloat,

source§

fn contains(&self, target: &MultiPoint<T>) -> bool

source§

impl<T> Contains<MultiPoint<T>> for Triangle<T>where T: GeoFloat,

source§

fn contains(&self, target: &MultiPoint<T>) -> bool

source§

impl<T> Contains<MultiPolygon<T>> for MultiPoint<T>where T: GeoFloat,

source§

fn contains(&self, target: &MultiPolygon<T>) -> bool

source§

impl<T> Contains<Point<T>> for MultiPoint<T>where T: CoordNum,

source§

fn contains(&self, point: &Point<T>) -> bool

source§

impl<T> Contains<Polygon<T>> for MultiPoint<T>where T: GeoFloat,

source§

fn contains(&self, target: &Polygon<T>) -> bool

source§

impl<T> Contains<Rect<T>> for MultiPoint<T>where T: GeoFloat,

source§

fn contains(&self, target: &Rect<T>) -> bool

source§

impl<T> Contains<Triangle<T>> for MultiPoint<T>where T: GeoFloat,

source§

fn contains(&self, target: &Triangle<T>) -> bool

source§

impl<T> Contains for MultiPoint<T>where T: GeoFloat,

source§

fn contains(&self, target: &MultiPoint<T>) -> bool

source§

impl<T> CoordinatePosition for MultiPoint<T>where T: GeoNum,

§

type Scalar = T

source§

fn calculate_coordinate_position( &self, coord: &Coord<T>, is_inside: &mut bool, _boundary_count: &mut usize )

source§

fn coordinate_position(&self, coord: &Coord<Self::Scalar>) -> CoordPos

source§

impl<T: CoordNum> CoordsIter for MultiPoint<T>

source§

fn coords_count(&self) -> usize

Return the number of coordinates in the MultiPoint.

§

type Iter<'a> = Flatten<MapCoordsIter<'a, T, Iter<'a, Point<T>>, Point<T>>> where T: 'a

§

type ExteriorIter<'a> = <MultiPoint<T> as CoordsIter>::Iter<'a> where T: 'a

§

type Scalar = T

source§

fn coords_iter(&self) -> Self::Iter<'_>

Iterate over all exterior and (if any) interior coordinates of a geometry. Read more
source§

fn exterior_coords_iter(&self) -> Self::ExteriorIter<'_>

Iterate over all exterior coordinates of a geometry. Read more
source§

impl<T> Debug for MultiPoint<T>where T: Debug + CoordNum,

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl<T> EuclideanDistance<T> for MultiPoint<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Geometry<T>> for MultiPoint<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, geom: &Geometry<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, GeometryCollection<T>> for MultiPoint<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &GeometryCollection<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Line<T>> for MultiPoint<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &Line<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, LineString<T>> for MultiPoint<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &LineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiLineString<T>> for MultiPoint<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &MultiLineString<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for Geometry<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, other: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for GeometryCollection<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for Line<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for LineString<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for MultiLineString<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for MultiPolygon<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for Point<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for Polygon<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for Rect<T>where T: GeoFloat + Signed + RTreeNum + FloatConst,

source§

fn euclidean_distance(&self, other: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPoint<T>> for Triangle<T>where T: GeoFloat + Signed + RTreeNum + FloatConst,

source§

fn euclidean_distance(&self, other: &MultiPoint<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, MultiPolygon<T>> for MultiPoint<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &MultiPolygon<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Point<T>> for MultiPoint<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &Point<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Polygon<T>> for MultiPoint<T>where T: GeoFloat + FloatConst + RTreeNum,

source§

fn euclidean_distance(&self, target: &Polygon<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Rect<T>> for MultiPoint<T>where T: GeoFloat + Signed + RTreeNum + FloatConst,

source§

fn euclidean_distance(&self, other: &Rect<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T> EuclideanDistance<T, Triangle<T>> for MultiPoint<T>where T: GeoFloat + Signed + RTreeNum + FloatConst,

source§

fn euclidean_distance(&self, other: &Triangle<T>) -> T

Returns the distance between two geometries Read more
source§

impl<T, IP> From<IP> for MultiPoint<T>where T: CoordNum, IP: Into<Point<T>>,

source§

fn from(x: IP) -> MultiPoint<T>

Convert a single Point (or something which can be converted to a Point) into a one-member MultiPoint

source§

impl<T> From<MultiPoint<T>> for Geometry<T>where T: CoordNum,

source§

fn from(x: MultiPoint<T>) -> Geometry<T>

Converts to this type from the input type.
source§

impl<T, IP> From<Vec<IP>> for MultiPoint<T>where T: CoordNum, IP: Into<Point<T>>,

source§

fn from(v: Vec<IP>) -> MultiPoint<T>

Convert a Vec of Points (or Vec of things which can be converted to a Point) into a MultiPoint.

source§

impl<T, IP> FromIterator<IP> for MultiPoint<T>where T: CoordNum, IP: Into<Point<T>>,

source§

fn from_iter<I>(iter: I) -> MultiPoint<T>where I: IntoIterator<Item = IP>,

Collect the results of a Point iterator into a MultiPoint

source§

impl GeodesicArea<f64> for MultiPoint

source§

fn geodesic_perimeter(&self) -> f64

Determine the perimeter of a geometry on an ellipsoidal model of the earth. Read more
source§

fn geodesic_area_signed(&self) -> f64

Determine the area of a geometry on an ellipsoidal model of the earth. Read more
source§

fn geodesic_area_unsigned(&self) -> f64

Determine the area of a geometry on an ellipsoidal model of the earth. Supports very large geometries that cover a significant portion of the earth. Read more
source§

fn geodesic_perimeter_area_signed(&self) -> (f64, f64)

Determine the perimeter and area of a geometry on an ellipsoidal model of the earth, all in one operation. Read more
source§

fn geodesic_perimeter_area_unsigned(&self) -> (f64, f64)

Determine the perimeter and area of a geometry on an ellipsoidal model of the earth, all in one operation. Supports very large geometries that cover a significant portion of the earth. Read more
source§

impl<C: CoordNum> HasDimensions for MultiPoint<C>

source§

fn is_empty(&self) -> bool

Some geometries, like a MultiPoint, can have zero coordinates - we call these empty. Read more
source§

fn dimensions(&self) -> Dimensions

The dimensions of some geometries are fixed, e.g. a Point always has 0 dimensions. However for others, the dimensionality depends on the specific geometry instance - for example typical Rects are 2-dimensional, but it’s possible to create degenerate Rects which have either 1 or 0 dimensions. Read more
source§

fn boundary_dimensions(&self) -> Dimensions

The dimensions of the Geometry’s boundary, as used by OGC-SFA. Read more
source§

impl<T> Hash for MultiPoint<T>where T: Hash + CoordNum,

source§

fn hash<__H>(&self, state: &mut __H)where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<T> HaversineClosestPoint<T> for MultiPoint<T>where T: GeoFloat + FromPrimitive,

source§

fn haversine_closest_point(&self, from: &Point<T>) -> Closest<T>

source§

impl<T> InteriorPoint for MultiPoint<T>where T: GeoFloat,

use geo::InteriorPoint;
use geo::{MultiPoint, Point};

let empty: Vec<Point> = Vec::new();
let empty_multi_points: MultiPoint<_> = empty.into();
assert_eq!(empty_multi_points.interior_point(), None);

let points: MultiPoint<_> = vec![(5., 1.), (1., 3.), (3., 2.)].into();
assert_eq!(points.interior_point(), Some(Point::new(3., 2.)));
§

type Output = Option<Point<T>>

source§

fn interior_point(&self) -> Self::Output

Calculates a representative point inside the Geometry Read more
source§

impl<T, G> Intersects<G> for MultiPoint<T>where T: CoordNum, Point<T>: Intersects<G>,

source§

fn intersects(&self, rhs: &G) -> bool

source§

impl<T> Intersects<MultiPoint<T>> for Coord<T>where MultiPoint<T>: Intersects<Coord<T>>, T: CoordNum,

source§

fn intersects(&self, rhs: &MultiPoint<T>) -> bool

source§

impl<T> Intersects<MultiPoint<T>> for Line<T>where MultiPoint<T>: Intersects<Line<T>>, T: CoordNum,

source§

fn intersects(&self, rhs: &MultiPoint<T>) -> bool

source§

impl<T> Intersects<MultiPoint<T>> for Polygon<T>where MultiPoint<T>: Intersects<Polygon<T>>, T: CoordNum,

source§

fn intersects(&self, rhs: &MultiPoint<T>) -> bool

source§

impl<T> Intersects<MultiPoint<T>> for Rect<T>where MultiPoint<T>: Intersects<Rect<T>>, T: CoordNum,

source§

fn intersects(&self, rhs: &MultiPoint<T>) -> bool

source§

impl<'a, T> IntoIterator for &'a MultiPoint<T>where T: CoordNum,

§

type Item = &'a Point<T>

The type of the elements being iterated over.
§

type IntoIter = Iter<'a, Point<T>>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> <&'a MultiPoint<T> as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
source§

impl<'a, T> IntoIterator for &'a mut MultiPoint<T>where T: CoordNum,

§

type Item = &'a mut Point<T>

The type of the elements being iterated over.
§

type IntoIter = IterMut<'a, Point<T>>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> <&'a mut MultiPoint<T> as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
source§

impl<T> IntoIterator for MultiPoint<T>where T: CoordNum,

Iterate over the Points in this MultiPoint.

§

type Item = Point<T>

The type of the elements being iterated over.
§

type IntoIter = IntoIter<Point<T>>

Which kind of iterator are we turning this into?
source§

fn into_iter(self) -> <MultiPoint<T> as IntoIterator>::IntoIter

Creates an iterator from a value. Read more
source§

impl<T> KNearestConcaveHull for MultiPoint<T>where T: GeoFloat + RTreeNum,

§

type Scalar = T

source§

fn k_nearest_concave_hull(&self, k: u32) -> Polygon<Self::Scalar>

source§

impl<T: CoordNum, NT: CoordNum> MapCoords<T, NT> for MultiPoint<T>

§

type Output = MultiPoint<NT>

source§

fn map_coords( &self, func: impl Fn(Coord<T>) -> Coord<NT> + Copy ) -> Self::Output

Apply a function to all the coordinates in a geometric object, returning a new object. Read more
source§

fn try_map_coords<E>( &self, func: impl Fn(Coord<T>) -> Result<Coord<NT>, E> + Copy ) -> Result<Self::Output, E>

Map a fallible function over all the coordinates in a geometry, returning a Result Read more
source§

impl<T: CoordNum> MapCoordsInPlace<T> for MultiPoint<T>

source§

fn map_coords_in_place(&mut self, func: impl Fn(Coord<T>) -> Coord<T> + Copy)

Apply a function to all the coordinates in a geometric object, in place Read more
source§

fn try_map_coords_in_place<E>( &mut self, func: impl Fn(Coord<T>) -> Result<Coord<T>, E> ) -> Result<(), E>

Map a fallible function over all the coordinates in a geometry, in place, returning a Result. Read more
source§

impl<T> OutlierDetection<T> for MultiPoint<T>where T: GeoFloat + Sum,

source§

fn outliers(&self, k_neighbours: usize) -> Vec<T>

The LOF algorithm. k_neighbours specifies the number of neighbours to use for local outlier classification. The paper linked above (see p. 100) suggests a k_neighbours value of 10 - 20 as a lower bound for “real-world” data. Read more
source§

fn prepared_detector(&self) -> PreparedDetector<'_, T>

Create a prepared outlier detector allowing multiple runs to retain the spatial index in use. A PreparedDetector can efficiently recompute outliers with different k_neigbhours values.
source§

fn generate_ensemble(&self, bounds: RangeInclusive<usize>) -> Vec<Vec<T>>

Perform successive runs with k_neighbours values between bounds, generating an ensemble of LOF scores, which may be aggregated using e.g. min, max, or mean Read more
source§

fn ensemble_min(&self, bounds: RangeInclusive<usize>) -> Vec<T>

Convenience method to efficiently calculate the minimum values of an LOF ensemble
source§

fn ensemble_max(&self, bounds: RangeInclusive<usize>) -> Vec<T>

Convenience method to efficiently calculate the maximum values of an LOF ensemble
source§

impl<T> PartialEq for MultiPoint<T>where T: PartialEq + CoordNum,

source§

fn eq(&self, other: &MultiPoint<T>) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<F: GeoFloat> Relate<F, GeometryCollection<F>> for MultiPoint<F>

source§

impl<F: GeoFloat> Relate<F, Line<F>> for MultiPoint<F>

source§

fn relate(&self, other: &Line<F>) -> IntersectionMatrix

source§

impl<F: GeoFloat> Relate<F, LineString<F>> for MultiPoint<F>

source§

impl<F: GeoFloat> Relate<F, MultiLineString<F>> for MultiPoint<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for GeometryCollection<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for Line<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for LineString<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for MultiLineString<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for MultiPoint<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for MultiPolygon<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for Point<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for Polygon<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for Rect<F>

source§

impl<F: GeoFloat> Relate<F, MultiPoint<F>> for Triangle<F>

source§

impl<F: GeoFloat> Relate<F, MultiPolygon<F>> for MultiPoint<F>

source§

impl<F: GeoFloat> Relate<F, Point<F>> for MultiPoint<F>

source§

fn relate(&self, other: &Point<F>) -> IntersectionMatrix

source§

impl<F: GeoFloat> Relate<F, Polygon<F>> for MultiPoint<F>

source§

fn relate(&self, other: &Polygon<F>) -> IntersectionMatrix

source§

impl<F: GeoFloat> Relate<F, Rect<F>> for MultiPoint<F>

source§

fn relate(&self, other: &Rect<F>) -> IntersectionMatrix

source§

impl<F: GeoFloat> Relate<F, Triangle<F>> for MultiPoint<F>

source§

fn relate(&self, other: &Triangle<F>) -> IntersectionMatrix

source§

impl<T> RelativeEq for MultiPoint<T>where T: AbsDiffEq<Epsilon = T> + CoordNum + RelativeEq,

source§

fn relative_eq( &self, other: &MultiPoint<T>, epsilon: <MultiPoint<T> as AbsDiffEq>::Epsilon, max_relative: <MultiPoint<T> as AbsDiffEq>::Epsilon ) -> bool

Equality assertion within a relative limit.

Examples
use geo_types::MultiPoint;
use geo_types::point;

let a = MultiPoint::new(vec![point![x: 0., y: 0.], point![x: 10., y: 10.]]);
let b = MultiPoint::new(vec![point![x: 0., y: 0.], point![x: 10.001, y: 10.]]);

approx::assert_relative_eq!(a, b, max_relative=0.1)
source§

fn default_max_relative() -> <MultiPoint<T> as AbsDiffEq>::Epsilon

The default relative tolerance for testing values that are far-apart. Read more
§

fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon ) -> bool

The inverse of [RelativeEq::relative_eq].
source§

impl<T> RemoveRepeatedPoints<T> for MultiPoint<T>where T: CoordNum + FromPrimitive,

source§

fn remove_repeated_points(&self) -> Self

Create a MultiPoint with repeated points removed.

source§

fn remove_repeated_points_mut(&mut self)

Remove repeated points from a MultiPoint inplace.

source§

impl<T> TryFrom<Geometry<T>> for MultiPoint<T>where T: CoordNum,

Convert a Geometry enum into its inner type.

Fails if the enum case does not match the type you are trying to convert it to.

§

type Error = Error

The type returned in the event of a conversion error.
source§

fn try_from( geom: Geometry<T> ) -> Result<MultiPoint<T>, <MultiPoint<T> as TryFrom<Geometry<T>>>::Error>

Performs the conversion.
source§

impl<T> Eq for MultiPoint<T>where T: Eq + CoordNum,

source§

impl<T> StructuralEq for MultiPoint<T>where T: CoordNum,

source§

impl<T> StructuralPartialEq for MultiPoint<T>where T: CoordNum,

Auto Trait Implementations§

§

impl<T> RefUnwindSafe for MultiPoint<T>where T: RefUnwindSafe,

§

impl<T> Send for MultiPoint<T>where T: Send,

§

impl<T> Sync for MultiPoint<T>where T: Sync,

§

impl<T> Unpin for MultiPoint<T>where T: Unpin,

§

impl<T> UnwindSafe for MultiPoint<T>where T: UnwindSafe,

Blanket Implementations§

source§

impl<T, M> AffineOps<T> for Mwhere T: CoordNum, M: MapCoordsInPlace<T> + MapCoords<T, T, Output = M>,

source§

fn affine_transform(&self, transform: &AffineTransform<T>) -> M

Apply transform immutably, outputting a new geometry.
source§

fn affine_transform_mut(&mut self, transform: &AffineTransform<T>)

Apply transform to mutate self.
source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<G, T, U> Convert<T, U> for Gwhere T: CoordNum, U: CoordNum + From<T>, G: MapCoords<T, U>,

§

type Output = <G as MapCoords<T, U>>::Output

source§

fn convert(&self) -> <G as Convert<T, U>>::Output

source§

impl<'a, T, G> ConvexHull<'a, T> for Gwhere T: GeoNum, G: CoordsIter<Scalar = T>,

§

type Scalar = T

source§

fn convex_hull(&'a self) -> Polygon<T>

§

impl<Q, K> Equivalent<K> for Qwhere Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
source§

impl<'a, T, G> Extremes<'a, T> for Gwhere G: CoordsIter<Scalar = T>, T: CoordNum,

source§

fn extremes(&'a self) -> Option<Outcome<T>>

source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, G> HausdorffDistance<T> for Gwhere T: GeoFloat, G: CoordsIter<Scalar = T>,

source§

fn hausdorff_distance<Rhs>(&self, rhs: &Rhs) -> Twhere Rhs: CoordsIter<Scalar = T>,

source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T, G> MinimumRotatedRect<T> for Gwhere T: CoordFloat + GeoFloat + GeoNum, G: CoordsIter<Scalar = T>,

source§

impl<G, IP, IR, T> Rotate<T> for Gwhere T: CoordFloat, IP: Into<Option<Point<T>>>, IR: Into<Option<Rect<T>>>, G: Clone + Centroid<Output = IP> + BoundingRect<T, Output = IR> + AffineOps<T>,

source§

fn rotate_around_centroid(&self, degrees: T) -> G

Rotate a geometry around its centroid by an angle, in degrees Read more
source§

fn rotate_around_centroid_mut(&mut self, degrees: T)

Mutable version of Self::rotate_around_centroid
source§

fn rotate_around_center(&self, degrees: T) -> G

Rotate a geometry around the center of its bounding box by an angle, in degrees. Read more
source§

fn rotate_around_center_mut(&mut self, degrees: T)

Mutable version of Self::rotate_around_center
source§

fn rotate_around_point(&self, degrees: T, point: Point<T>) -> G

Rotate a Geometry around an arbitrary point by an angle, given in degrees Read more
source§

fn rotate_around_point_mut(&mut self, degrees: T, point: Point<T>)

Mutable version of Self::rotate_around_point
source§

impl<T, IR, G> Scale<T> for Gwhere T: CoordFloat, IR: Into<Option<Rect<T>>>, G: Clone + AffineOps<T> + BoundingRect<T, Output = IR>,

source§

fn scale(&self, scale_factor: T) -> G

Scale a geometry from it’s bounding box center. Read more
source§

fn scale_mut(&mut self, scale_factor: T)

Mutable version of scale
source§

fn scale_xy(&self, x_factor: T, y_factor: T) -> G

Scale a geometry from it’s bounding box center, using different values for x_factor and y_factor to distort the geometry’s aspect ratio. Read more
source§

fn scale_xy_mut(&mut self, x_factor: T, y_factor: T)

Mutable version of scale_xy.
source§

fn scale_around_point( &self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>> ) -> G

Scale a geometry around a point of origin. Read more
source§

fn scale_around_point_mut( &mut self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>> )

Mutable version of scale_around_point.
source§

impl<T, IR, G> Skew<T> for Gwhere T: CoordFloat, IR: Into<Option<Rect<T>>>, G: Clone + AffineOps<T> + BoundingRect<T, Output = IR>,

source§

fn skew(&self, degrees: T) -> G

An affine transformation which skews a geometry, sheared by a uniform angle along the x and y dimensions. Read more
source§

fn skew_mut(&mut self, degrees: T)

Mutable version of skew.
source§

fn skew_xy(&self, degrees_x: T, degrees_y: T) -> G

An affine transformation which skews a geometry, sheared by an angle along the x and y dimensions. Read more
source§

fn skew_xy_mut(&mut self, degrees_x: T, degrees_y: T)

Mutable version of skew_xy.
source§

fn skew_around_point(&self, xs: T, ys: T, origin: impl Into<Coord<T>>) -> G

An affine transformation which skews a geometry around a point of origin, sheared by an angle along the x and y dimensions. Read more
source§

fn skew_around_point_mut(&mut self, xs: T, ys: T, origin: impl Into<Coord<T>>)

Mutable version of skew_around_point.
source§

impl<T, G> ToDegrees<T> for Gwhere T: CoordFloat, G: MapCoords<T, T, Output = G> + MapCoordsInPlace<T>,

source§

fn to_degrees(&self) -> Self

source§

fn to_degrees_in_place(&mut self)

source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, G> ToRadians<T> for Gwhere T: CoordFloat, G: MapCoords<T, T, Output = G> + MapCoordsInPlace<T>,

source§

fn to_radians(&self) -> Self

source§

fn to_radians_in_place(&mut self)

source§

impl<T, G> Translate<T> for Gwhere T: CoordNum, G: AffineOps<T>,

source§

fn translate(&self, x_offset: T, y_offset: T) -> G

Translate a Geometry along its axes by the given offsets Read more
source§

fn translate_mut(&mut self, x_offset: T, y_offset: T)

Translate a Geometry along its axes, but in place.
source§

impl<G, T, U> TryConvert<T, U> for Gwhere T: CoordNum, U: CoordNum + TryFrom<T>, G: MapCoords<T, U>,

§

type Output = Result<<G as MapCoords<T, U>>::Output, <U as TryFrom<T>>::Error>

source§

fn try_convert(&self) -> <G as TryConvert<T, U>>::Output

source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<G1, G2> Within<G2> for G1where G2: Contains<G1>,

source§

fn is_within(&self, b: &G2) -> bool