1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
use crate::{AffineOps, AffineTransform, BoundingRect, Coord, CoordFloat, CoordNum, Rect};

/// An affine transformation which scales a geometry up or down by a factor.
///
/// ## Performance
///
/// If you will be performing multiple transformations, like [`Scale`](crate::Scale),
/// [`Skew`](crate::Skew), [`Translate`](crate::Translate), or [`Rotate`](crate::Rotate), it is more
/// efficient to compose the transformations and apply them as a single operation using the
/// [`AffineOps`](crate::AffineOps) trait.
pub trait Scale<T: CoordNum> {
    /// Scale a geometry from it's bounding box center.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Scale;
    /// use geo::{LineString, line_string};
    ///
    /// let ls: LineString = line_string![(x: 0., y: 0.), (x: 10., y: 10.)];
    ///
    /// let scaled = ls.scale(2.);
    ///
    /// assert_eq!(scaled, line_string![
    ///     (x: -5., y: -5.),
    ///     (x: 15., y: 15.)
    /// ]);
    /// ```
    #[must_use]
    fn scale(&self, scale_factor: T) -> Self;

    /// Mutable version of [`scale`](Self::scale)
    fn scale_mut(&mut self, scale_factor: T);

    /// Scale a geometry from it's bounding box center, using different values for `x_factor` and
    /// `y_factor` to distort the geometry's [aspect ratio](https://en.wikipedia.org/wiki/Aspect_ratio).
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Scale;
    /// use geo::{LineString, line_string};
    ///
    /// let ls: LineString = line_string![(x: 0., y: 0.), (x: 10., y: 10.)];
    ///
    /// let scaled = ls.scale_xy(2., 4.);
    ///
    /// assert_eq!(scaled, line_string![
    ///     (x: -5., y: -15.),
    ///     (x: 15., y: 25.)
    /// ]);
    /// ```
    #[must_use]
    fn scale_xy(&self, x_factor: T, y_factor: T) -> Self;

    /// Mutable version of [`scale_xy`](Self::scale_xy).
    fn scale_xy_mut(&mut self, x_factor: T, y_factor: T);

    /// Scale a geometry around a point of `origin`.
    ///
    /// The point of origin is *usually* given as the 2D bounding box centre of the geometry, in
    /// which case you can just use [`scale`](Self::scale) or [`scale_xy`](Self::scale_xy), but
    /// this method allows you to specify any point.
    ///
    /// # Examples
    ///
    /// ```
    /// use geo::Scale;
    /// use geo::{LineString, line_string};
    ///
    /// let ls: LineString = line_string![(x: 0., y: 0.), (x: 10., y: 10.)];
    ///
    /// let scaled = ls.scale_xy(2., 4.);
    ///
    /// assert_eq!(scaled, line_string![
    ///     (x: -5., y: -15.),
    ///     (x: 15., y: 25.)
    /// ]);
    /// ```
    #[must_use]
    fn scale_around_point(&self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>>) -> Self;

    /// Mutable version of [`scale_around_point`](Self::scale_around_point).
    fn scale_around_point_mut(&mut self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>>);
}

impl<T, IR, G> Scale<T> for G
where
    T: CoordFloat,
    IR: Into<Option<Rect<T>>>,
    G: Clone + AffineOps<T> + BoundingRect<T, Output = IR>,
{
    fn scale(&self, scale_factor: T) -> Self {
        self.scale_xy(scale_factor, scale_factor)
    }

    fn scale_mut(&mut self, scale_factor: T) {
        self.scale_xy_mut(scale_factor, scale_factor);
    }

    fn scale_xy(&self, x_factor: T, y_factor: T) -> Self {
        let origin = match self.bounding_rect().into() {
            Some(rect) => rect.center(),
            // Empty geometries have no bounding rect, but in that case
            // transforming is a no-op anyway.
            None => return self.clone(),
        };
        self.scale_around_point(x_factor, y_factor, origin)
    }

    fn scale_xy_mut(&mut self, x_factor: T, y_factor: T) {
        let origin = match self.bounding_rect().into() {
            Some(rect) => rect.center(),
            // Empty geometries have no bounding rect, but in that case
            // transforming is a no-op anyway.
            None => return,
        };
        self.scale_around_point_mut(x_factor, y_factor, origin);
    }

    fn scale_around_point(&self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>>) -> Self {
        let affineop = AffineTransform::scale(x_factor, y_factor, origin);
        self.affine_transform(&affineop)
    }

    fn scale_around_point_mut(&mut self, x_factor: T, y_factor: T, origin: impl Into<Coord<T>>) {
        let affineop = AffineTransform::scale(x_factor, y_factor, origin);
        self.affine_transform_mut(&affineop)
    }
}