1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
use std::fmt;
use crate::util::*;
/// This structure conceptullay represents a half-line (which also known as "Ray").
/// 
/// A ray has a "start vertex" **r<sub>0</sub>**, that is, **r<sub>0</sub>** is a part of the ray itself,
/// but we cannot make a disk of radius ε which contained in the ray around **r<sub>0</sub>** for every ε > 0.
/// 
/// If we consider the vectors from **r<sub>0</sub>** to each point on the ray, then they are all
/// pairwise parallel. Therefore, there exists a "direction vector" **v** and we can
/// represent each point on ray by the parameterized equation:
/// 
/// <span style="display: inline-block; width: 100%; text-align:center;"> **r<sub>0</sub>** + *t***v** (*t* ≥ 0), </span>
/// 
/// where *t* is the parameter which is greater than or equal to zero.
/// 
/// We can also think of a ray as the locus of a moving point at a constant velocity from the starting point **r<sub>0</sub>** as time passes.
/// In this case, the location of the point after time *t* (*t* ≥ 0) is equal to **r<sub>0</sub>** + *t***v**.
#[derive(Clone, Default, Debug, Copy)]
pub struct Ray{
    pub(crate) origin: Coordinate,
    pub(crate) angle: Coordinate,
}
impl fmt::Display for Ray{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Origin : (x, y) = ({}, {}) / Angle : (dx, dy) = ({}, {})", self.origin.0, self.origin.1, self.angle.0, self.angle.1)
    }
}
impl Ray{
    /// Creates and returns a [Ray] w.r.t. the given arguments.
    ///  
    /// # Arguments
    ///  
    /// + `src`: The starting point of the ray.
    /// + `dst`: The point for which `src` is heading.
    /// 
    /// # Return
    /// 
    /// A `Ray` that starts from `src` towards `dst` with arrival time 1.
    /// 
    /// # Example
    /// 
    /// ```
    /// use geo_buffer::{Coordinate, Ray};
    /// 
    /// let c1 = (1., 2.).into();
    /// let c2 = (2., 3.).into();
    /// let r1 = Ray::new(c1, c2);
    /// 
    /// ```
    /// 
    pub fn new(src: Coordinate, dst: Coordinate) -> Self{
        Self {
            origin: src,
            angle: dst-src,
        }
    }
    /// Returns the "starting point" of the given ray.
    /// 
    /// # Example
    /// 
    /// ```
    /// use geo_buffer::{Coordinate, Ray};
    /// 
    /// let c1 = (1., 2.).into();
    /// let c2 = (2., 3.).into();
    /// let r1 = Ray::new(c1, c2);
    /// 
    /// assert!(c1.eq(&r1.point()));
    /// 
    /// ```
    pub fn point(&self) -> Coordinate{
        self.point_by_ratio(0.)
    }
    /// Returns the value of parameterized equation **r<sub>0</sub>** + *t***v** by the given ratio *t*.
    /// 
    /// # Example
    /// 
    /// ```
    /// use geo_buffer::{Coordinate, Ray};
    /// 
    /// let c1 = (1., 2.).into();
    /// let c2 = (2., 3.).into();
    /// let r1 = Ray::new(c1, c2);
    /// 
    /// assert!(r1.point_by_ratio(2.).eq(&(3., 4.).into()));
    /// ```
    pub fn point_by_ratio(&self, ratio: f64) -> Coordinate{
        self.origin + self.angle*ratio
    }
    pub(crate) fn bisector(&self, rhs: &Ray, origin: Coordinate, orient: bool) -> Self{
        let mut ray = self.angle*rhs.angle.norm() + rhs.angle*self.angle.norm();
        if feq(ray.0, 0.) && feq(ray.1, 0.) {
            ray = (-self.angle.1, self.angle.0).into();
            if orient {ray = ray * -1.;}
        }
        else  {
            if orient == true && self.angle.outer_product(&ray) > 0.0 {ray = ray*-1.0;}
            if orient == false && self.angle.outer_product(&ray) < 0.0 {ray = ray*-1.0;}
        }
        // else {
        //     if orient == true && tmp_angle.outer_product(&ray) > 0.0 {ray = ray*-1.0;}
        //     if orient == false && tmp_angle.outer_product(&ray) < 0.0 {ray = ray*-1.0;}
        // }
        Self { origin: origin, angle: ray }
    }
    /// Checks whether `self` contains the given Cartesian coordinate.
    /// 
    /// Note that this function considers `self` as a open-ended line.
    /// That is, if the given point lies on the extended line of `self`, this function returns `true`.
    /// 
    /// # Return
    /// 
    /// + `true` if the given point lies on `self`,
    /// + `false` otherwise.
    /// 
    /// # Example
    /// 
    /// ```
    /// use geo_buffer::{Coordinate, Ray};
    /// 
    /// let c1 = (1., 2.).into();
    /// let c2 = (2., 3.).into();
    /// let r1 = Ray::new(c1, c2);
    /// 
    /// assert!(r1.is_contain(&(3., 4.).into()));
    /// ```
    pub fn is_contain(&self, rhs: &Coordinate) -> bool {
        if self.is_degenerated() {return feq(self.origin.0, rhs.0) && feq(self.origin.1, rhs.1);}
        feq((*rhs - self.origin).outer_product(&self.angle), 0.)
    }
    /// Checks whether the given two rays are intersecting with each other.
    /// More precisely, it checks whether they have one or more common points.
    /// 
    /// # Return
    /// 
    /// + `true` if the given rays have one or more common points,
    /// + `false` otherwise.
    /// 
    /// # Example
    /// 
    /// ```
    /// use geo_buffer::{Coordinate, Ray};
    /// 
    /// let c1 = (1., 2.).into();
    /// let c2 = (2., 3.).into();
    /// let r1 = Ray::new(c1, c2);
    /// 
    /// assert!(r1.is_contain(&(3., 4.).into()));
    /// ```
    pub fn is_intersect(&self, rhs: &Ray) -> bool {
        let op = self.angle.outer_product(&rhs.angle);
        if feq(op, 0.0){
            if self.is_contain(&rhs.origin) {return true;}
            if rhs.is_contain(&self.origin) {return true;}
            return false;
        }
        let i = (rhs.origin - self.origin).outer_product(&rhs.angle) / self.angle.outer_product(&rhs.angle);
        let j = (rhs.origin - self.origin).outer_product(&self.angle) / self.angle.outer_product(&rhs.angle);
        if fgeq(i, 0.) && fgeq(j, 0.) {return true;}
        false
    }
    /// Returns a common point of the given rays. If they have more than 2 common points, then returns a
    /// middle point of the starting points of the given rays.
    /// 
    /// Note that this function considers the rays as a open-ended line.
    /// That is, if the common point lies on the extended line(s) of them, this function returns the point.
    /// 
    /// # Example
    /// 
    /// ```
    /// use geo_buffer::{Coordinate, Ray};
    /// 
    /// let c1 = (0., 0.).into();
    /// let c2 = (1., 1.).into();
    /// let c3 = (4., 0.).into();
    /// let c4 = (0., 4.).into();
    /// let r1 = Ray::new(c1, c2);
    /// let r2 = Ray::new(c3, c4);
    /// 
    /// assert!(r1.intersect(&r2).eq(&(2., 2.).into()));
    /// 
    /// ```
    pub fn intersect(&self, rhs: &Ray) -> Coordinate{
        let op = self.angle.outer_product(&rhs.angle);
        if feq(op, 0.) {
            if self.is_contain(&rhs.origin) {
                if fgt((rhs.origin - self.origin)/self.angle, 0.) {return rhs.origin;}
                else {return self.origin;}
            }
            return (self.origin + rhs.origin)/2.0;
        }
        let i = (rhs.origin - self.origin).outer_product(&rhs.angle) / self.angle.outer_product(&rhs.angle);
        self.origin + self.angle*i
    }
    /// Checks whether the given two rays are parallel. If they have more than 2 common points,
    /// they are not considered as parallel.
    /// 
    /// # Return
    /// 
    /// + `true` if the given rays are parallel,
    /// + `false` otherwise.
    /// 
    /// # Example
    /// 
    /// ```
    /// use geo_buffer::{Coordinate, Ray};
    /// 
    /// let c1 = (0., 0.).into();
    /// let c2 = (1., 1.).into();
    /// let c3 = (0., 1.).into();
    /// let c4 = (1., 2.).into();
    /// let r1 = Ray::new(c1, c2);
    /// let r2 = Ray::new(c3, c4);
    /// 
    /// assert!(r1.is_parallel(&r2));
    /// ```
    pub fn is_parallel(&self, rhs: &Ray) -> bool {
        let op = self.angle.outer_product(&rhs.angle);
        if feq(op, 0.0) && !self.is_contain(&rhs.origin) {return true;}
        return false;
    }
    pub(crate) fn is_degenerated(&self) -> bool {
        if feq(self.angle.0, 0.) && feq(self.angle.1, 0.) {true} else {false}
    }
    /// Normalizes the given `Ray`. The magnitude of the 'velocity' becomes 1. Does nothing if it is 0.
    /// 
    /// # Example
    /// 
    /// ```
    /// use geo_buffer::{Coordinate, Ray};
    /// 
    /// let c1 = (0., 0.).into();
    /// let c2 = (3., 4.).into();
    /// let mut r1 = Ray::new(c1, c2);
    /// r1.normalize();
    /// 
    /// assert!(r1.point_by_ratio(1.).eq(&(0.6, 0.8).into()));
    /// ```
    pub fn normalize(&mut self) {
        if self.is_degenerated() {return;}
        self.angle = self.angle/self.angle.norm();
    }
    pub(crate) fn orientation(&self, rhs: &Coordinate) -> i32 {
        let res = self.angle.outer_product(&(*rhs - self.origin));
        if feq(res, 0.) {return 0;}
        if fgt(res, 0.) {return 1;}
        return -1;
    }
    /// Returns the reversed ray of the given ray. The returned ray has the same starting point
    /// and the opposite direction to the given ray.
    pub fn reverse(&self) -> Self{
        Self{
            origin: self.origin,
            angle: self.angle*-1.,
        }
    }
}