1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//! A solution strategy for finding the best chromosome in case of small problem spaces (with a 100% guarantee)
mod builder;
pub mod prelude;

pub use self::builder::{
    Builder as PermutateBuilder, TryFromBuilderError as TryFromPermutateBuilderError,
};

use super::Strategy;
use crate::chromosome::Chromosome;
use crate::fitness::{Fitness, FitnessOrdering, FitnessValue};
use crate::genotype::PermutableGenotype;
use crossbeam::channel::bounded;
use num::BigUint;
use rand::Rng;
use std::fmt;

/// All possible combinations of genes are iterated over as chromosomes.
/// The fitness is calculated for each chromosome and the best is taken.
/// For efficiency reasons the full population is never instantiated as a whole.
///
/// The `chromosome_permutations_size` is subject to combinatorial explosion, so check the genotype
/// for practical values before using the [Permutate] strategy.
///
/// See [PermutateBuilder] for initialization options.
///
/// Example:
/// ```
/// use genetic_algorithm::strategy::permutate::prelude::*;
/// use genetic_algorithm::fitness::placeholders::CountTrue;
///
/// // the search space
/// let genotype = BinaryGenotype::builder() // boolean alleles
///     .with_genes_size(16)                 // 16 genes per chromosome
///     .build()
///     .unwrap();
///
/// // the search strategy
/// let mut rng = rand::thread_rng(); // unused randomness provider implementing Trait rand::Rng
/// let permutate = Permutate::builder()
///     .with_genotype(genotype)
///     .with_fitness(CountTrue)                          // count the number of true values in the chromosomes
///     .with_fitness_ordering(FitnessOrdering::Minimize) // aim for the least true values
///     .with_multithreading(true)                        // use all cores
///     .call(&mut rng)
///     .unwrap();
///
/// // it's all about the best chromosome after all
/// let best_chromosome = permutate.best_chromosome().unwrap();
/// assert_eq!(best_chromosome.genes, vec![false; 16])
/// ```
pub struct Permutate<G: PermutableGenotype, F: Fitness<Genotype = G>> {
    genotype: G,
    fitness: F,
    fitness_ordering: FitnessOrdering,
    multithreading: bool,

    pub population_size: BigUint,
    best_chromosome: Option<Chromosome<G>>,
}

impl<G: PermutableGenotype, F: Fitness<Genotype = G>> Strategy<G> for Permutate<G, F> {
    fn call<R: Rng>(&mut self, rng: &mut R) {
        if self.multithreading {
            self.call_multi_thread(rng)
        } else {
            self.call_single_thread(rng)
        }
    }
    fn best_chromosome(&self) -> Option<Chromosome<G>> {
        self.best_chromosome.clone()
    }
}

impl<G: PermutableGenotype, F: Fitness<Genotype = G>> Permutate<G, F> {
    pub fn builder() -> PermutateBuilder<G, F> {
        PermutateBuilder::new()
    }
    fn call_single_thread<R: Rng>(&mut self, _rng: &mut R) {
        for mut chromosome in self.genotype.clone().chromosome_permutations_into_iter() {
            self.fitness.call_for_chromosome(&mut chromosome);
            self.update_best_chromosome(&chromosome);
        }
    }
    fn call_multi_thread<R: Rng>(&mut self, _rng: &mut R) {
        crossbeam::scope(|s| {
            let number_of_threads = rayon::current_num_threads();
            let (unprocessed_chromosome_sender, unprocessed_chromosome_receiver) =
                bounded(number_of_threads * 100);
            let (processed_chromosome_sender, processed_chromosome_receiver) =
                bounded(number_of_threads * 100);

            let thread_genotype = self.genotype.clone();
            s.spawn(move |_| {
                for chromosome in thread_genotype.chromosome_permutations_into_iter() {
                    unprocessed_chromosome_sender.send(chromosome).unwrap();
                }
                drop(unprocessed_chromosome_sender);
            });

            for _i in 0..number_of_threads {
                let mut fitness = self.fitness.clone();
                let unprocessed_chromosome_receiver = unprocessed_chromosome_receiver.clone();
                let processed_chromosome_sender = processed_chromosome_sender.clone();
                s.spawn(move |_| {
                    for mut chromosome in unprocessed_chromosome_receiver {
                        fitness.call_for_chromosome(&mut chromosome);
                        processed_chromosome_sender.send(chromosome).unwrap();
                    }
                });
            }

            s.spawn(|_| {
                for chromosome in processed_chromosome_receiver {
                    self.update_best_chromosome(&chromosome);
                }
            });
        })
        .unwrap();
    }
    fn update_best_chromosome(&mut self, contending_best_chromosome: &Chromosome<G>) {
        match self.best_chromosome.as_ref() {
            None => {
                self.best_chromosome = Some(contending_best_chromosome.clone());
            }
            Some(current_best_chromosome) => {
                match (
                    current_best_chromosome.fitness_score,
                    contending_best_chromosome.fitness_score,
                ) {
                    (None, None) => {}
                    (Some(_), None) => {}
                    (None, Some(_)) => {
                        self.best_chromosome = Some(contending_best_chromosome.clone());
                    }
                    (Some(current_fitness_score), Some(contending_fitness_score)) => {
                        match self.fitness_ordering {
                            FitnessOrdering::Maximize => {
                                if contending_fitness_score > current_fitness_score {
                                    self.best_chromosome = Some(contending_best_chromosome.clone());
                                }
                            }
                            FitnessOrdering::Minimize => {
                                if contending_fitness_score < current_fitness_score {
                                    self.best_chromosome = Some(contending_best_chromosome.clone());
                                }
                            }
                        }
                    }
                }
            }
        }
    }

    fn best_fitness_score(&self) -> Option<FitnessValue> {
        self.best_chromosome.as_ref().and_then(|c| c.fitness_score)
    }
}

impl<G: PermutableGenotype, F: Fitness<Genotype = G>> TryFrom<PermutateBuilder<G, F>>
    for Permutate<G, F>
{
    type Error = TryFromPermutateBuilderError;

    fn try_from(builder: PermutateBuilder<G, F>) -> Result<Self, Self::Error> {
        if builder.genotype.is_none() {
            Err(TryFromPermutateBuilderError(
                "Permutate requires a Genotype",
            ))
        } else if builder.fitness.is_none() {
            Err(TryFromPermutateBuilderError("Permutate requires a Fitness"))
        } else {
            let genotype = builder.genotype.unwrap();
            let population_size = genotype.chromosome_permutations_size();

            Ok(Self {
                genotype: genotype,
                fitness: builder.fitness.unwrap(),

                fitness_ordering: builder.fitness_ordering,
                multithreading: builder.multithreading,

                best_chromosome: None,
                population_size: population_size,
            })
        }
    }
}

impl<G: PermutableGenotype, F: Fitness<Genotype = G>> fmt::Display for Permutate<G, F> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "permutate:")?;
        writeln!(f, "  genotype: {:?}", self.genotype)?;
        writeln!(f, "  fitness: {:?}", self.fitness)?;

        writeln!(f, "  population_size: {}", self.population_size)?;
        writeln!(f, "  fitness_ordering: {:?}", self.fitness_ordering)?;
        writeln!(f, "  multithreading: {:?}", self.multithreading)?;

        writeln!(f, "  best fitness score: {:?}", self.best_fitness_score())?;
        writeln!(f, "  best_chromosome: {:?}", self.best_chromosome.as_ref())
    }
}