1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
mod builder;
pub mod prelude;
pub use self::builder::{
Builder as HillClimbBuilder, TryFromBuilderError as TryFromHillClimbBuilderError,
};
use super::Strategy;
use crate::chromosome::Chromosome;
use crate::fitness::{Fitness, FitnessOrdering, FitnessValue};
use crate::genotype::IncrementalGenotype;
use rand::distributions::{Bernoulli, Distribution};
use rand::Rng;
use std::cell::RefCell;
use std::fmt;
use thread_local::ThreadLocal;
pub type RandomChromosomeProbability = f64;
#[derive(Clone, Debug)]
pub enum HillClimbVariant {
Stochastic,
SteepestAscent,
}
pub struct HillClimb<G: IncrementalGenotype, F: Fitness<Genotype = G>> {
genotype: G,
fitness: F,
variant: HillClimbVariant,
fitness_ordering: FitnessOrdering,
multithreading: bool,
max_stale_generations: Option<usize>,
target_fitness_score: Option<FitnessValue>,
random_chromosome_probability: RandomChromosomeProbability,
scaling: Option<(f32, f32, f32)>,
pub current_iteration: usize,
pub current_generation: usize,
pub current_scaling: Option<f32>,
pub best_generation: usize,
best_chromosome: Option<Chromosome<G>>,
}
impl<G: IncrementalGenotype, F: Fitness<Genotype = G>> Strategy<G> for HillClimb<G, F> {
fn call<R: Rng>(&mut self, rng: &mut R) {
self.current_generation = 0;
self.reset_scaling();
self.best_generation = 0;
self.best_chromosome = Some(self.genotype.chromosome_factory(rng));
let random_chromosome_sampler = Bernoulli::new(self.random_chromosome_probability).unwrap();
let mut fitness_thread_local: Option<ThreadLocal<RefCell<F>>> = None;
if self.multithreading {
fitness_thread_local = Some(ThreadLocal::new());
}
while !self.is_finished() {
if random_chromosome_sampler.sample(rng) {
let working_chromosome = &mut self.genotype.chromosome_factory(rng);
self.fitness.call_for_chromosome(working_chromosome);
self.update_best_chromosome(working_chromosome);
} else {
match self.variant {
HillClimbVariant::Stochastic => {
let working_chromosome = &mut self.best_chromosome().unwrap();
self.genotype.mutate_chromosome_neighbour(
working_chromosome,
self.current_scaling,
rng,
);
self.fitness.call_for_chromosome(working_chromosome);
self.update_best_chromosome(working_chromosome);
}
HillClimbVariant::SteepestAscent => {
let working_chromosome = &mut self.best_chromosome().unwrap();
let working_population = &mut self
.genotype
.neighbouring_population(working_chromosome, self.current_scaling);
self.fitness
.call_for_population(working_population, fitness_thread_local.as_ref());
self.update_best_chromosome(
working_population
.best_chromosome(self.fitness_ordering)
.unwrap_or(working_chromosome),
);
}
}
}
self.current_generation += 1;
}
}
fn best_chromosome(&self) -> Option<Chromosome<G>> {
self.best_chromosome.clone()
}
}
impl<G: IncrementalGenotype, F: Fitness<Genotype = G>> HillClimb<G, F> {
pub fn builder() -> HillClimbBuilder<G, F> {
HillClimbBuilder::new()
}
fn update_best_chromosome(&mut self, contending_best_chromosome: &Chromosome<G>) {
self.scale_down();
match self.best_chromosome.as_ref() {
None => {
self.best_chromosome = Some(contending_best_chromosome.clone());
}
Some(current_best_chromosome) => {
match (
current_best_chromosome.fitness_score,
contending_best_chromosome.fitness_score,
) {
(None, None) => {}
(Some(_), None) => {}
(None, Some(_)) => {
self.best_chromosome = Some(contending_best_chromosome.clone());
self.best_generation = self.current_generation;
self.reset_scaling();
}
(Some(current_fitness_score), Some(contending_fitness_score)) => {
match self.fitness_ordering {
FitnessOrdering::Maximize => {
if contending_fitness_score >= current_fitness_score {
self.best_chromosome = Some(contending_best_chromosome.clone());
if contending_fitness_score > current_fitness_score {
self.best_generation = self.current_generation;
self.reset_scaling();
}
}
}
FitnessOrdering::Minimize => {
if contending_fitness_score <= current_fitness_score {
self.best_chromosome = Some(contending_best_chromosome.clone());
if contending_fitness_score < current_fitness_score {
self.best_generation = self.current_generation;
self.reset_scaling();
}
}
}
}
}
}
}
}
}
fn is_finished(&self) -> bool {
self.is_finished_by_max_stale_generations()
|| self.is_finished_by_target_fitness_score()
|| self.is_finished_by_min_scale()
}
fn is_finished_by_max_stale_generations(&self) -> bool {
if let Some(max_stale_generations) = self.max_stale_generations {
self.current_generation - self.best_generation >= max_stale_generations
} else {
false
}
}
fn is_finished_by_target_fitness_score(&self) -> bool {
if let Some(target_fitness_score) = self.target_fitness_score {
if let Some(fitness_score) = self.best_fitness_score() {
match self.fitness_ordering {
FitnessOrdering::Maximize => fitness_score >= target_fitness_score,
FitnessOrdering::Minimize => fitness_score <= target_fitness_score,
}
} else {
false
}
} else {
false
}
}
fn is_finished_by_min_scale(&self) -> bool {
if let Some(current_scaling) = self.current_scaling {
current_scaling < self.scaling.as_ref().unwrap().2
} else {
false
}
}
#[allow(dead_code)]
fn report_round(&self) {
println!(
"current generation: {}, best fitness score: {:?}, current fitness score: {:?}, current scale: {:?}, genes: {:?}",
self.current_generation,
self.best_fitness_score(),
self.best_chromosome.as_ref().map(|o| &o.fitness_score),
self.current_scaling.as_ref(),
false,
);
}
fn best_fitness_score(&self) -> Option<FitnessValue> {
self.best_chromosome.as_ref().and_then(|c| c.fitness_score)
}
fn reset_scaling(&mut self) {
self.current_scaling = self.scaling.map(|(base, _factor, _min)| base);
}
fn scale_down(&mut self) {
if let Some(current_scaling) = self.current_scaling {
self.current_scaling = Some(current_scaling * self.scaling.as_ref().unwrap().1);
}
}
}
impl<G: IncrementalGenotype, F: Fitness<Genotype = G>> TryFrom<HillClimbBuilder<G, F>>
for HillClimb<G, F>
{
type Error = TryFromHillClimbBuilderError;
fn try_from(builder: HillClimbBuilder<G, F>) -> Result<Self, Self::Error> {
if builder.genotype.is_none() {
Err(TryFromHillClimbBuilderError(
"HillClimb requires a Genotype",
))
} else if builder.fitness.is_none() {
Err(TryFromHillClimbBuilderError("HillClimb requires a Fitness"))
} else if builder.max_stale_generations.is_none()
&& builder.target_fitness_score.is_none()
&& builder.scaling.is_none()
{
Err(TryFromHillClimbBuilderError(
"HillClimb requires at least a max_stale_generations, target_fitness_score or scaling ending condition",
))
} else {
let genotype = builder.genotype.unwrap();
Ok(Self {
genotype: genotype,
fitness: builder.fitness.unwrap(),
variant: builder.variant.unwrap_or(HillClimbVariant::Stochastic),
fitness_ordering: builder.fitness_ordering,
multithreading: builder.multithreading,
max_stale_generations: builder.max_stale_generations,
target_fitness_score: builder.target_fitness_score,
random_chromosome_probability: builder.random_chromosome_probability.unwrap_or(0.0),
scaling: builder.scaling,
current_iteration: 0,
current_generation: 0,
current_scaling: None,
best_generation: 0,
best_chromosome: None,
})
}
}
}
impl<G: IncrementalGenotype, F: Fitness<Genotype = G>> fmt::Display for HillClimb<G, F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "hill_climb:")?;
writeln!(f, " genotype: {:?}", self.genotype)?;
writeln!(f, " fitness: {:?}", self.fitness)?;
writeln!(
f,
" max_stale_generations: {:?}",
self.max_stale_generations
)?;
writeln!(f, " target_fitness_score: {:?}", self.target_fitness_score)?;
writeln!(f, " fitness_ordering: {:?}", self.fitness_ordering)?;
writeln!(f, " multithreading: {:?}", self.multithreading)?;
writeln!(f, " scaling: {:?}", self.scaling)?;
writeln!(f, " current iteration: {:?}", self.current_iteration)?;
writeln!(f, " current generation: {:?}", self.current_generation)?;
writeln!(f, " best fitness score: {:?}", self.best_fitness_score())?;
writeln!(f, " best_chromosome: {:?}", self.best_chromosome.as_ref())
}
}