1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
use crate::{GenericVec, Storage};
use core::{
    marker::PhantomData,
    ops::{Bound, RangeBounds},
    ptr::NonNull,
};

/// This struct is created by [`GenericVec::raw_drain`]. See its documentation for more.
pub struct RawDrain<'a, T, S: ?Sized + Storage<T>> {
    vec: *mut GenericVec<T, S>,
    old_vec_len: usize,
    write_front: *mut T,
    read_front: *mut T,
    read_back: *mut T,
    write_back: *mut T,
    mark: PhantomData<&'a mut GenericVec<T, S>>,
}

impl<T, S: ?Sized + Storage<T>> Drop for RawDrain<'_, T, S> {
    fn drop(&mut self) {
        unsafe {
            self.skip_n_front(self.remaining());

            if Self::IS_ZS {
                let front_len = self.write_front as usize;
                let back_len = self.old_vec_len.wrapping_sub(self.write_back as usize);
                let len = front_len + back_len;
                (*self.vec).set_len_unchecked(len);
            } else {
                let start = (*self.vec).as_mut_ptr();
                let range = start..start.add(self.old_vec_len);

                let front_len = self.write_front.offset_from(range.start) as usize;
                let back_len = range.end.offset_from(self.write_back) as usize;
                let len = front_len + back_len;

                if self.write_front != self.write_back {
                    self.write_front.copy_from(self.write_back, back_len);
                }

                (*self.vec).set_len_unchecked(len);
            }
        }
    }
}

#[inline(never)]
#[cold]
#[track_caller]
pub(super) fn slice_start_index_overflow_fail() -> ! {
    panic!("attempted to index slice from after maximum usize");
}

#[inline(never)]
#[cold]
#[track_caller]
pub(super) fn slice_end_index_overflow_fail() -> ! {
    panic!("attempted to index slice up to maximum usize");
}

#[inline(never)]
#[cold]
#[track_caller]
pub(super) fn slice_index_order_fail(index: usize, end: usize) -> ! {
    panic!("slice index starts at {} but ends at {}", index, end);
}

#[inline(never)]
#[cold]
#[track_caller]
pub(super) fn slice_end_index_len_fail(index: usize, len: usize) -> ! {
    panic!("range end index {} out of range for slice of length {}", index, len);
}

pub(crate) fn check_range<R: RangeBounds<usize>>(len: usize, range: R) -> core::ops::Range<usize> {
    let start = match range.start_bound() {
        Bound::Included(&start) => start,
        Bound::Excluded(start) => start
            .checked_add(1)
            .unwrap_or_else(|| slice_start_index_overflow_fail()),
        Bound::Unbounded => 0,
    };

    let end = match range.end_bound() {
        Bound::Included(end) => end.checked_add(1).unwrap_or_else(|| slice_end_index_overflow_fail()),
        Bound::Excluded(&end) => end,
        Bound::Unbounded => len,
    };

    if start > end {
        slice_index_order_fail(start, end);
    }
    if end > len {
        slice_end_index_len_fail(end, len);
    }

    start..end
}

impl<'a, T, S: ?Sized + Storage<T>> RawDrain<'a, T, S> {
    pub(crate) const IS_ZS: bool = core::mem::size_of::<T>() == 0;
    const ZS_PTR: *mut T = NonNull::<T>::dangling().as_ptr();

    #[inline]
    pub(crate) fn new<R>(vec: &'a mut GenericVec<T, S>, range: R) -> Self
    where
        R: RangeBounds<usize>,
    {
        unsafe {
            let raw_vec = vec as *mut GenericVec<T, S>;
            let vec = &mut *raw_vec;
            let old_vec_len = vec.len();

            let range = check_range(old_vec_len, range);
            let (start, end) = (range.start, range.end);

            if Self::IS_ZS {
                vec.set_len_unchecked(start);

                Self {
                    vec: raw_vec,
                    old_vec_len,
                    write_front: start as _,
                    read_front: start as _,
                    read_back: end as _,
                    write_back: end as _,
                    mark: PhantomData,
                }
            } else {
                let range = vec[range].as_mut_ptr_range();

                vec.set_len_unchecked(start);

                Self {
                    vec: raw_vec,
                    old_vec_len,
                    write_front: range.start,
                    read_front: range.start,
                    read_back: range.end,
                    write_back: range.end,
                    mark: PhantomData,
                }
            }
        }
    }

    /// The number of remaining elements in range of this `RawDrain`
    ///
    /// The `RawDrain` is complete when there are 0 remaining elements
    #[inline]
    pub fn remaining(&self) -> usize {
        if Self::IS_ZS {
            (self.read_back as usize).wrapping_sub(self.read_front as usize)
        } else {
            unsafe { self.read_back.offset_from(self.read_front) as usize }
        }
    }

    /// Returns `true` if the `RawDrain` is complete
    #[inline]
    pub fn is_complete(&self) -> bool { self.read_back == self.read_front }

    /// Returns a reference to the next element if the `RawDrain`
    ///
    /// Note: this does *not* advance the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` must not be complete
    #[inline]
    pub unsafe fn front(&mut self) -> &mut T {
        if Self::IS_ZS {
            unsafe { &mut *Self::ZS_PTR }
        } else {
            unsafe { &mut *self.read_front }
        }
    }

    /// Returns a reference to the last element if the `RawDrain`
    ///
    /// Note: this does *not* advance the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` must not be complete
    #[inline]
    pub unsafe fn back(&mut self) -> &mut T {
        if Self::IS_ZS {
            unsafe { &mut *Self::ZS_PTR }
        } else {
            unsafe { &mut *self.read_back.sub(1) }
        }
    }

    /// Removes the next element of the `RawDrain`, and the underlying [`GenericVec`]
    /// and advances the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` must not be complete
    #[inline]
    pub unsafe fn take_front(&mut self) -> T {
        debug_assert!(!self.is_complete(), "Cannot take from a complete RawDrain");

        unsafe {
            if Self::IS_ZS {
                self.read_front = (self.read_front as usize).wrapping_add(1) as _;
                Self::ZS_PTR.read()
            } else {
                let read_front = self.read_front;
                self.read_front = self.read_front.add(1);
                read_front.read()
            }
        }
    }

    /// Removes the last element of the `RawDrain`, and the underlying [`GenericVec`]
    /// and advances the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` must not be complete
    #[inline]
    pub unsafe fn take_back(&mut self) -> T {
        debug_assert!(!self.is_complete(), "Cannot take from a complete RawDrain");

        unsafe {
            if Self::IS_ZS {
                self.read_back = (self.read_back as usize).wrapping_sub(1) as _;
                Self::ZS_PTR.read()
            } else {
                self.read_back = self.read_back.sub(1);
                self.read_back.read()
            }
        }
    }

    /// Skips the next element of the `RawDrain`, and keeps the element in the
    /// underlying [`GenericVec`] and advances the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` must not be complete
    #[inline]
    pub unsafe fn skip_front(&mut self) {
        debug_assert!(!self.is_complete(), "Cannot skip from a complete RawDrain");

        unsafe {
            if Self::IS_ZS {
                self.skip_n_front(1);
            } else {
                if self.write_front as *const T != self.read_front {
                    self.write_front.copy_from_nonoverlapping(self.read_front, 1);
                }
                self.read_front = self.read_front.add(1);
                self.write_front = self.write_front.add(1);
            }
        }
    }

    /// Skips the last element of the `RawDrain`, and keeps the element in the
    /// underlying [`GenericVec`] and advances the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` must not be complete
    #[inline]
    pub unsafe fn skip_back(&mut self) {
        debug_assert!(!self.is_complete(), "Cannot skip from a complete RawDrain");

        unsafe {
            if Self::IS_ZS {
                self.skip_n_back(1);
            } else {
                self.read_back = self.read_back.sub(1);
                self.write_back = self.write_back.sub(1);
                if self.write_back as *const T != self.read_back {
                    self.write_back.copy_from_nonoverlapping(self.read_back, 1);
                }
            }
        }
    }

    /// Skips the next `n` elements of the `RawDrain`, and keeps them in the
    /// underlying [`GenericVec`] and advances the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` have at least n remaining elements
    #[inline]
    pub unsafe fn skip_n_front(&mut self, n: usize) {
        debug_assert!(self.remaining() >= n);

        unsafe {
            if Self::IS_ZS {
                self.read_front = (self.read_front as usize).wrapping_add(n) as _;
                self.write_front = (self.write_front as usize).wrapping_add(n) as _;
            } else {
                if self.write_front as *const T != self.read_front {
                    self.write_front.copy_from(self.read_front, n);
                }
                self.read_front = self.read_front.add(n);
                self.write_front = self.write_front.add(n);
            }
        }
    }

    /// Skips the last `n` elements of the `RawDrain`, and keeps them in the
    /// underlying [`GenericVec`] and advances the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` have at least n remaining elements
    #[inline]
    pub unsafe fn skip_n_back(&mut self, n: usize) {
        debug_assert!(self.remaining() >= n);

        unsafe {
            if Self::IS_ZS {
                self.read_back = (self.read_back as usize).wrapping_sub(n) as _;
                self.write_back = (self.write_back as usize).wrapping_sub(n) as _;
            } else {
                self.read_back = self.read_back.sub(n);
                self.write_back = self.write_back.sub(n);
                if self.write_back as *const T != self.read_back {
                    self.write_back.copy_from(self.read_back, n);
                }
            }
        }
    }

    // TODO: this doc is bad, improve it
    /// Write the value into empty space at the front of the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` must have taken at least 1 more element than it has
    /// written from the front
    pub unsafe fn consume_write_front(&mut self, value: T) {
        if Self::IS_ZS {
            core::mem::forget(value);
            self.write_front = (self.write_front as usize).wrapping_add(1) as _;
        } else {
            unsafe {
                self.write_front.write(value);
                self.write_front = self.write_front.add(1);
            }
        }
    }

    // TODO: this doc is bad, improve it
    /// Write the value into empty space at the back of the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` must have taken at least 1 more element than it has
    /// written from the back
    pub unsafe fn consume_write_back(&mut self, value: T) {
        if Self::IS_ZS {
            core::mem::forget(value);
            self.write_back = (self.write_back as usize).wrapping_sub(1) as _;
        } else {
            unsafe {
                self.write_back = self.write_back.sub(1);
                self.write_back.write(value);
            }
        }
    }

    // TODO: this doc is bad, improve it
    /// Write the slice into empty space at the front of the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` must have taken at least `slice.len()` more element than it has
    /// written from the front
    pub unsafe fn consume_write_slice_front(&mut self, slice: &[T]) {
        unsafe {
            if Self::IS_ZS {
                self.write_front = (self.write_front as usize).wrapping_add(slice.len()) as _;
            } else {
                self.write_front.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
                self.write_front = self.write_front.add(slice.len());
            }
        }
    }

    // TODO: this doc is bad, improve it
    /// Write the slice into empty space at the back of the `RawDrain`
    ///
    /// # Safety
    ///
    /// The `RawDrain` must have taken at least `slice.len()` more element than it has
    /// written from the back
    pub unsafe fn consume_write_slice_back(&mut self, slice: &[T]) {
        unsafe {
            if Self::IS_ZS {
                self.write_back = (self.write_back as usize).wrapping_sub(slice.len()) as _;
            } else {
                self.write_back = self.write_back.sub(slice.len());
                self.write_back.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
            }
        }
    }

    /// Assert that there is at least `space` elements of room left to write into
    /// the `RawDrain`, and the underlying [`GenericVec`]
    ///
    /// # Safety
    ///
    /// the `RawDrain` must be complete
    pub unsafe fn assert_space(&mut self, space: usize) {
        debug_assert!(
            self.is_complete(),
            "You can only call `assert_space` on a complete `RawDrain`, this is UB in release mode!"
        );
        unsafe {
            if Self::IS_ZS {
                let write_space = (self.write_back as usize).wrapping_sub(self.write_front as usize);

                if let Some(increase_by) = space.checked_sub(write_space) {
                    self.write_back = (self.write_back as usize).wrapping_add(increase_by) as _;
                    self.old_vec_len += increase_by;
                }
            } else {
                let write_space = self.write_back.offset_from(self.write_front) as usize;

                if write_space >= space {
                    return
                }

                let start = (*self.vec).as_mut_ptr();
                let capacity = (*self.vec).capacity();
                let range = start..start.add(self.old_vec_len);

                let front_len = self.write_front.offset_from(range.start) as usize;
                let back_len = range.end.offset_from(self.write_back) as usize;
                let len = front_len + back_len;

                if len + space > capacity {
                    let wf = self.write_front.offset_from(range.start) as usize;
                    let wb = self.write_back.offset_from(range.start) as usize;
                    let rf = self.read_front.offset_from(range.start) as usize;
                    let rb = self.read_back.offset_from(range.start) as usize;

                    let vec = &mut *self.vec;
                    vec.storage.reserve(len + space);

                    let start = vec.as_mut_ptr();
                    self.write_front = start.add(wf);
                    self.write_back = start.add(wb);
                    self.read_front = start.add(rf);
                    self.read_back = start.add(rb);
                }

                let increase_by = space.wrapping_sub(write_space);
                let new_write_back = self.write_back.add(increase_by);
                new_write_back.copy_from(self.write_back, back_len);
                self.write_back = new_write_back;
                self.old_vec_len += increase_by;
            }
        }
    }
}