1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
use alloc::{vec, vec::Vec};
use core::iter;

use crate::{Curve, Point, Scalar};

/// Straus algorithm
///
/// # How it works
/// Below we'll briefly explain how the algorithm works for better auditability. You can
/// also refer to [original](#credits) implementation.
///
/// Note that algorithm is defined for a parameter $w$, however, in our implementation we hardcoded
/// $w = 5$. It was observed in the benchmarks that $w=5$ gives the best performance for all
/// $n$ (amount of input scalar/point pairs).
///
/// Recall that the multiscalar algorithm takes list of $n$ points $P_1, \dots, P_n$, and a list
/// of $n$ scalars $s_1, \dots, s_n$, and it outputs $Q$ such that:
///
/// $$Q = s_1 P_1 + \dots + s_n P_n$$
///
/// ## Non-Adjacent Form (NAF)
/// Straus algorithm works with scalars in Non-Adjacent Form. Each scalar $s$ is represented
/// as:
///
/// $$s = s_0 2^0 + s_1 2^1 + \dots + s_k 2^k$$
///
/// where $-2^{w-1} \le s_i < 2^{w-1}$, each $s_i$ is either odd or zero, and $k = \log_2 s$ (most
/// commonly, we work with scalars for which $k=256$).
///
/// ## Lookup tables
/// For each point $P_i$, we precompute a lookup table $T_j = j P_i$. We only need to do that
/// for odd $j$ up to $2^{w-1}$. In this way, NAF allows us to cut size of lookup tables by
/// the factor of 4: we reduce size of tables by 2 because NAF has signed terms, and then we
/// also reduce table size twice by working only with odd coefficients.
///
/// ## Computing the sum
///
/// Let's write the full sum that we need to compute:
/// $$
/// \begin{aligned}
/// s_1 P_1 &=&& s_{1,0} P_1 &&+&& 2^1 s_{1,1} P_1 &&+ \dots +&& 2^{k} s_{1,k-1} P_1 \\\\
///    \+   & &&        +    && &&            +    &&         &&                +    \\\\
/// s_2 P_2 &=&& s_{2,0} P_2 &&+&& 2^1 s_{2,1} P_2 &&+ \dots +&& 2^{k} s_{2,k-1} P_2 \\\\
///    \+   & &&        +    && &&            +    &&         &&                +    \\\\
/// \vdots  & && \vdots      && && \vdots          &&         && \vdots              \\\\
///    \+   & &&        +    && &&            +    &&         &&                +    \\\\
/// s_n P_n &=&& s_{n,0} P_n &&+&& 2^1 s_{n,1} P_n &&+ \dots +&& 2^{k-1} s_{n,k-1} P_n
/// \end{aligned}
/// $$
///
/// Note that each $s_{i,j} P_i$ is already computed in a lookup table, and can be replaced with
/// $T_{i, s_{i,j}}$. To compute a sum, we go column-by-column from right to left.
///
/// $$
/// \begin{aligned}
/// Q_k     &= &              &\sum_{i = 0}^n T_{i, s_{i,k}} \\\\
/// Q_{k-1} &= &2 Q_k +       &\sum_{i = 0}^n T_{i, s_{i,k-1}} \\\\
/// \vdots  &  &              &\\\\
/// Q_j     &= &2 Q_{j + 1} + &\sum_{i = 0}^n T_{i, s_{i,j}} \\\\
/// \vdots  &  &              &\\\\
/// Q = Q_0 &= &2 Q_1 +       &\sum_{i = 0}^n T_{i, s_{i,0}} \\\\
/// \end{aligned}
/// $$
///
/// ## Credits
/// Algorithm was adopted from [`curve25519_dalek`] crate, with the modification that
/// it would work with any curve, not only with ed25519. You can find original implementation
/// [here](https://github.com/dalek-cryptography/curve25519-dalek/blob/1efe6a93b176c4389b78e81e52b2cf85d728aac6/curve25519-dalek/src/backend/serial/scalar_mul/straus.rs#L147-L201).
pub struct Straus;

impl<E: Curve> super::MultiscalarMul<E> for Straus {
    fn multiscalar_mul<S, P>(
        scalar_points: impl ExactSizeIterator<Item = (S, P)>,
    ) -> crate::Point<E>
    where
        S: AsRef<Scalar<E>>,
        P: AsRef<Point<E>>,
    {
        let mut nafs = NafMatrix::new(5, scalar_points.len());
        let lookup_tables: Vec<_> = scalar_points
            .into_iter()
            .map(|(scalar, point)| {
                nafs.add_scalar(scalar.as_ref());
                point
            })
            .map(|point| LookupTable::new(*point.as_ref()))
            .collect();
        if lookup_tables.is_empty() {
            return Point::zero();
        }

        let naf_size = nafs.naf_size;

        let mut r = Point::zero();
        for (i, is_first_iter) in (0..naf_size)
            .rev()
            .zip(iter::once(true).chain(iter::repeat(false)))
        {
            if !is_first_iter {
                r = r.double();
            }
            for (naf, lookup_table) in nafs.iter().zip(&lookup_tables) {
                let naf_i = naf[i];
                match naf_i.cmp(&0) {
                    core::cmp::Ordering::Greater => {
                        r += lookup_table.get(naf_i.unsigned_abs().into());
                    }
                    core::cmp::Ordering::Less => {
                        r -= lookup_table.get(naf_i.unsigned_abs().into());
                    }
                    core::cmp::Ordering::Equal => {}
                }
            }
        }
        r
    }
}

struct LookupTable<E: Curve>([Point<E>; 8]);

impl<E: Curve> LookupTable<E> {
    /// Builds a lookup table for point $P$
    fn new(point: Point<E>) -> Self {
        let mut table = [point; 8];
        let point2 = point.double();
        for i in 0..7 {
            table[i + 1] = point2 + table[i];
        }
        Self(table)
    }
    /// Takes odd integer $x$ such as $0 < x < 2^4$, returns $x P$
    fn get(&self, x: usize) -> Point<E> {
        debug_assert_eq!(x & 1, 1);
        debug_assert!(x < 16);

        self.0[x / 2]
    }
}

/// Stores a width-$w$ "Non-Adjacent Form" (NAF) of multiple scalars
///
/// Width-$w$ NAF represents an integer $k$ via coefficients $k_0, \dots, k_n$ such as:
///
/// $$k = \sum_{i=0}^{n} k_i \cdot 2^i$$
///
/// where each $k_i$ is odd and lies within range $-2^{w-1} \le k_i < 2^{w-1}$.
///
/// Non Adjacent Form allows us to reduce size of tables we need to precompute in Straus
/// multiscalar multiplication by factor of 4.
struct NafMatrix<E: Curve> {
    /// Size of one scalar in non adjacent form
    naf_size: usize,
    /// Input parameter `w`
    w: usize,
    /// width = 2^w
    width: u64,
    /// width_half = width / 2
    width_half: u64,
    /// window_mask = width - 1
    window_mask: u64,
    matrix: Vec<i8>,

    _curve: core::marker::PhantomData<E>,
}

impl<E: Curve> NafMatrix<E> {
    /// Construct a new matrix with parameter `w`
    ///
    /// Preallocates memory to fit `capacity` amount of scalars
    fn new(w: usize, capacity: usize) -> Self {
        assert!((2..=8).contains(&w));
        let naf_size = Scalar::<E>::serialized_len() * 8 + 1;
        let width = 1 << w;

        Self {
            naf_size,
            w,
            width,
            width_half: 1 << (w - 1),
            matrix: Vec::with_capacity(naf_size * capacity),
            window_mask: width - 1,
            _curve: Default::default(),
        }
    }
    /// Adds a scalar into matrix
    fn add_scalar(&mut self, scalar: &Scalar<E>) {
        let scalar_bytes = scalar.to_le_bytes();
        let mut x_u64 = vec![0u64; scalar_bytes.len() / 8 + 1];
        read_le_u64_into(&scalar_bytes, &mut x_u64[0..4]);

        let offset = self.matrix.len();
        debug_assert!(
            offset + self.naf_size <= self.matrix.capacity(),
            "unnecessary allocations detected"
        );
        self.matrix.resize(offset + self.naf_size, 0i8);
        let naf = &mut self.matrix[offset..];

        let mut pos = 0;
        let mut carry = false;
        while pos < self.naf_size {
            let u64_idx = pos / 64;
            let bit_idx = pos % 64;
            let bit_buf: u64 = if bit_idx < 64 - self.w {
                // This window bits are contained in a single u64
                (x_u64[u64_idx] >> bit_idx) & self.window_mask
            } else {
                // Combine the current u64's bits with the bits from the next u64
                ((x_u64[u64_idx] >> bit_idx) | (x_u64[u64_idx + 1] << (64 - bit_idx)))
                    & self.window_mask
            };

            // Add the carry into the current window
            let window = if carry { bit_buf + 1 } else { bit_buf };

            if window & 1 == 0 {
                // If the window value is even, preserve the carry and continue.
                // Why is the carry preserved?
                // If carry == 0 and window & 1 == 0, then the next carry should be 0
                // If carry == 1 and window & 1 == 0, then bit_buf & 1 == 1 so the next carry should be 1
                pos += 1;
                continue;
            }

            if window < self.width_half {
                carry = false;
                naf[pos] = window as i8;
            } else {
                carry = true;
                naf[pos] = (window as i8).wrapping_sub(self.width as i8);
            }

            pos += self.w;
        }

        debug_assert!(!carry);
    }

    /// Iterates over scalars NAF representations in the same order as
    /// scalars were added into the matrix
    fn iter(&self) -> impl Iterator<Item = &[i8]> {
        self.matrix.chunks_exact(self.naf_size)
    }
}

/// Read one or more u64s stored as little endian bytes.
///
/// ## Panics
/// Panics if `src.len() != 8 * dst.len()`.
fn read_le_u64_into(src: &[u8], dst: &mut [u64]) {
    assert!(
        src.len() == 8 * dst.len(),
        "src.len() = {}, dst.len() = {}",
        src.len(),
        dst.len()
    );
    for (bytes, val) in src.chunks(8).zip(dst.iter_mut()) {
        *val = u64::from_le_bytes(
            #[allow(clippy::expect_used)]
            bytes
                .try_into()
                .expect("Incorrect src length, should be 8 * dst.len()"),
        );
    }
}

#[cfg(test)]
#[generic_tests::define]
mod tests {
    use alloc::vec::Vec;
    use core::iter;

    use crate::{Curve, Point, Scalar};

    #[test]
    fn non_adjacent_form_is_correct<E: Curve>() {
        let mut rng = rand_dev::DevRng::new();

        let scalars = iter::once(Scalar::<E>::zero())
            .chain(iter::once(Scalar::one()))
            .chain(iter::once(-Scalar::one()))
            .chain(iter::repeat_with(|| Scalar::random(&mut rng)).take(15))
            .collect::<Vec<_>>();

        for w in 2..=8 {
            let mut nafs = super::NafMatrix::new(w, scalars.len());
            scalars.iter().for_each(|scalar| nafs.add_scalar(scalar));

            for (scalar, naf) in scalars.iter().zip(nafs.iter()) {
                std::eprintln!("scalar {scalar:?}");
                std::eprintln!("naf: {naf:?}");

                assert!(naf.iter().all(|&k_i| -(1i16 << (w - 1)) <= i16::from(k_i)
                    && i16::from(k_i) < (1i16 << (w - 1))));

                let expected = naf.iter().rev().fold(Scalar::<E>::zero(), |acc, naf_i| {
                    acc + acc + Scalar::from(*naf_i)
                });
                assert_eq!(*scalar, expected)
            }
        }
    }

    #[test]
    fn lookup_table<E: Curve>() {
        let mut rng = rand_dev::DevRng::new();

        let points = iter::once(Point::<E>::generator().to_point())
            .chain(iter::repeat_with(|| Scalar::random(&mut rng) * Point::generator()).take(50));
        for point in points {
            let table = super::LookupTable::new(point);

            for x in (1..16).step_by(2) {
                assert_eq!(table.get(x), point * Scalar::from(x));
            }
        }
    }

    #[instantiate_tests(<crate::curves::Secp256k1>)]
    mod secp256k1 {}
    #[instantiate_tests(<crate::curves::Secp256r1>)]
    mod secp256r1 {}
    #[instantiate_tests(<crate::curves::Stark>)]
    mod stark {}
    #[instantiate_tests(<crate::curves::Ed25519>)]
    mod ed25519 {}
}