1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
use core::ops::RangeBounds;

use crate::{BTree, BTreeTrait, HeapVec, MutElemArrSlice, NodePath, QueryResult};

pub trait Sliceable<T = usize>: HasLength<T> {
    #[must_use]
    fn slice(&self, range: impl RangeBounds<T>) -> Self;
    /// slice in-place
    fn slice_(&mut self, range: impl RangeBounds<T>)
    where
        Self: Sized,
    {
        *self = self.slice(range);
    }
}

pub trait Mergeable {
    /// this is not symmetric
    fn can_merge(&self, rhs: &Self) -> bool;
    fn merge_right(&mut self, rhs: &Self);
    fn merge_left(&mut self, left: &Self);
}

pub trait HasLength<T = usize> {
    fn rle_len(&self) -> T;
}

impl<T: Mergeable, B: BTreeTrait<Elem = T>> BTree<B> {
    /// This will return the number of mergeable elements. Ideally this should be zero.
    /// This is provided for debugging and optimization
    pub fn get_mergeable_num(&self) -> usize {
        let mut last: Option<&T> = None;
        let mut num = 0;
        for span in self.iter() {
            match &mut last {
                Some(last) => {
                    num += if last.can_merge(span) { 1 } else { 0 };
                }
                None => last = Some(span),
            }
        }

        num
    }

    /// Try to merge the elements at the given range.
    /// This operation will invalidate the path if succeed.
    pub fn try_merge_to_neighbors(&mut self, start: QueryResult, end: QueryResult) {
        todo!()
    }

    /// return merged
    fn try_merge_next(&mut self, path: NodePath) -> bool {
        let leaf_idx = path.last().unwrap();
        let leaf = self.get_node(leaf_idx.arena);
        if leaf.is_lack() {
            self.handle_lack(path.last().unwrap().arena);
            return true;
        }

        let mut sibling_path = path.clone();
        if !self.next_sibling(&mut sibling_path) {
            return false;
        }

        let next_idx = sibling_path.last().unwrap();
        let next = self.get_node(next_idx.arena);
        if next.is_lack() {
            self.handle_lack(sibling_path.last().unwrap().arena);
            return true;
        }

        if leaf
            .elements
            .last()
            .unwrap()
            .can_merge(next.elements.first().unwrap())
        {
            let (a, b) = self.get2_mut(leaf_idx.arena, next_idx.arena);
            while a
                .elements
                .last()
                .map(|x| x.can_merge(b.elements.first().unwrap()))
                .unwrap_or(false)
            {
                let last = a.elements.pop().unwrap();
                b.elements[0].merge_left(&last);
            }

            if a.is_lack() {
                self.handle_lack(path.last().unwrap().arena);
                return true;
            }
        }

        false
    }

    /// return merged, if true the path is invalidated
    fn try_merge_prev(&mut self, path: NodePath) -> bool {
        let mut sibling_path = path;
        if !self.prev_sibling(&mut sibling_path) {
            return false;
        }

        self.try_merge_next(sibling_path)
    }
}

pub fn delete_range_in_elements<T: Sliceable>(
    elements: &mut HeapVec<T>,
    start: Option<QueryResult>,
    end: Option<QueryResult>,
) -> Vec<T> {
    match (&start, &end) {
        (Some(from), Some(to)) if from.elem_index == to.elem_index => {
            if from.elem_index >= elements.len() {
                assert!(!from.found);
                return Vec::new();
            }

            let mut ans = Vec::new();
            let elem = &mut elements[from.elem_index];
            ans.push(elem.slice(from.offset..to.offset));
            if to.offset != elem.rle_len() {
                if from.offset == 0 {
                    elements[from.elem_index].slice_(to.offset..);
                } else {
                    let right = elements[from.elem_index].slice(to.offset..);
                    elements[from.elem_index].slice_(..from.offset);
                    elements.insert(from.elem_index + 1, right);
                }
            } else if from.offset == 0 {
                elements.remove(from.elem_index);
            } else {
                elements[from.elem_index].slice_(to.offset..);
            }

            return ans;
        }
        _ => {}
    }

    let mut ans: Vec<T> = Vec::new();
    let start_index = match &start {
        Some(start) => {
            if start.offset == 0 {
                // the whole element is included in the target range
                start.elem_index
            } else if start.offset == elements[start.elem_index].rle_len() {
                // the start element is not included in the target range
                start.elem_index + 1
            } else {
                // partially included
                let elem = &mut elements[start.elem_index];
                ans.push(elem.slice(start.offset..));
                elem.slice_(..start.offset);
                start.elem_index + 1
            }
        }
        None => 0,
    };
    match &end {
        Some(end) if end.elem_index < elements.len() => {
            if end.offset == elements[end.elem_index].rle_len() {
                // the whole element is included in the target range
                ans.extend(elements.drain(start_index..end.elem_index + 1));
            } else if end.offset != 0 {
                ans.extend(elements.drain(start_index..end.elem_index));
                let elem = &mut elements[start_index];
                ans.push(elem.slice(..end.offset));
                elem.slice_(end.offset..);
            } else {
                ans.extend(elements.drain(start_index..end.elem_index));
            }
        }
        _ => {
            ans.extend(elements.drain(start_index..));
        }
    };
    ans
}

/// Update the given sliced elements by f. If f returns true, the cache should be updated.
///
/// This method will split the elements if necessary.
pub fn update_slice<T: Sliceable, F>(slice: &mut MutElemArrSlice<T>, f: &mut F) -> bool
where
    F: FnMut(&mut T) -> bool,
{
    let mut should_update = false;

    // if the start and end are in the same element
    match (slice.start, slice.end) {
        (Some((start_index, start_offset)), Some((end_index, end_offset)))
            if start_index == end_index =>
        {
            if start_offset > 0 {
                if end_offset < slice.elements[start_index].rle_len() {
                    // need to insert two new elements, because the range is in the middle of the element
                    let mut elem = slice.elements[start_index].slice(start_offset..end_offset);
                    should_update = should_update || f(&mut elem);
                    let right = slice.elements[start_index].slice(end_offset..);
                    slice.elements[start_index].slice_(..start_offset);
                    slice
                        .elements
                        .splice(start_index + 1..start_index + 1, [elem, right]);
                } else {
                    // slice the elem into two part: ( ..start ), ( start.. )
                    let mut elem = slice.elements[start_index].slice(start_offset..end_offset);
                    should_update = should_update || f(&mut elem);
                    slice.elements[start_index].slice_(..start_offset);
                    slice.elements.insert(start_index + 1, elem);
                }
            } else if end_offset < slice.elements[start_index].rle_len() {
                // slice the elem into two part: ( ..end ), ( end.. )
                let mut elem = slice.elements[start_index].slice(..end_offset);
                should_update = should_update || f(&mut elem);
                slice.elements[start_index].slice_(end_offset..);
                slice.elements.insert(start_index, elem);
            } else {
                // no need to slice, update directly
                should_update = should_update || f(&mut slice.elements[start_index]);
            }

            return should_update;
        }
        _ => {}
    };

    let mut shift = 0;
    let start = match slice.start {
        Some((start_index, start_offset)) => {
            if start_offset == 0
                || start_index == slice.elements.len()
                || slice.elements[start_index].rle_len() == 0
            {
                start_index
            } else if start_offset == slice.elements[start_index].rle_len() {
                start_index + 1
            } else {
                let elem = slice.elements[start_index].slice(start_offset..);
                slice.elements[start_index].slice_(..start_offset);
                slice.elements.insert(start_index + 1, elem);
                shift = 1;
                start_index + 1
            }
        }
        None => 0,
    };
    let end = match slice.end {
        Some((end_index, end_offset)) if end_index + shift < slice.elements.len() => {
            let origin = &mut slice.elements[end_index + shift];
            if end_offset == origin.rle_len() || origin.rle_len() == 0 {
                end_index + 1 + shift
            } else if end_offset == 0 {
                end_index + shift
            } else {
                let elem = origin.slice(..end_offset);
                origin.slice_(end_offset..);
                slice.elements.insert(end_index + shift, elem);
                shift += 1;
                end_index + shift
            }
        }
        _ => slice.elements.len(),
    };

    let mut ans = false;
    for elem in slice.elements[start..end].iter_mut() {
        ans = f(elem) || ans;
    }
    ans
}

pub fn scan_and_merge<T: Mergeable>(elements: &mut HeapVec<T>, start: usize) {
    if start + 1 >= elements.len() {
        return;
    }

    let (left, right) = elements.split_at_mut(start + 1);
    let start_elem = left.last_mut().unwrap();
    let mut i = 0;
    while i < right.len() {
        if !start_elem.can_merge(&right[i]) {
            break;
        }

        start_elem.merge_right(&right[i]);
        i += 1;
    }

    if i > 0 {
        elements.drain(start + 1..start + 1 + i);
    }
}

pub fn insert_with_split<T: Sliceable + Mergeable>(
    elements: &mut HeapVec<T>,
    index: usize,
    offset: usize,
    elem: T,
) {
    if elements.is_empty() {
        elements.push(elem);
        return;
    }

    if index == elements.len() {
        debug_assert_eq!(offset, 0);
        let last = elements.last_mut().unwrap();
        if last.can_merge(&elem) {
            last.merge_right(&elem);
        } else {
            elements.push(elem);
        }

        return;
    }

    assert!(index < elements.len());
    if offset == 0 {
        let target = elements.get_mut(index).unwrap();
        if elem.can_merge(target) {
            target.merge_left(&elem);
        } else {
            elements.insert(index, elem);
        }
    } else if offset == elements[index].rle_len() {
        let target = elements.get_mut(index).unwrap();
        if target.can_merge(&elem) {
            target.merge_right(&elem);
        } else {
            elements.insert(index + 1, elem);
        }
    } else {
        let right = elements[index].slice(offset..);
        elements[index].slice_(..offset);
        let left = elements.get_mut(index).unwrap();
        if left.can_merge(&elem) {
            left.merge_right(&elem);
            elements.insert(index + 1, right);
        } else {
            elements.splice(index + 1..index + 1, [elem, right]);
        }
    }
}