generic_array/lib.rs
1//! This crate implements a structure that can be used as a generic array type.
2//!
3//! **Requires minimum Rust version of 1.65.0
4//!
5//! [Documentation on GH Pages](https://fizyk20.github.io/generic-array/generic_array/)
6//! may be required to view certain types on foreign crates.
7//!
8//! Before Rust 1.51, arrays `[T; N]` were problematic in that they couldn't be
9//! generic with respect to the length `N`, so this wouldn't work:
10//!
11//! ```compile_fail
12//! struct Foo<N> {
13//! data: [i32; N],
14//! }
15//! ```
16//!
17//! Since 1.51, the below syntax is valid:
18//!
19//! ```rust
20//! struct Foo<const N: usize> {
21//! data: [i32; N],
22//! }
23//! ```
24//!
25//! However, the const-generics we have as of writing this are still the minimum-viable product (`min_const_generics`), so many situations still result in errors, such as this example:
26//!
27//! ```compile_fail
28//! # struct Foo<const N: usize> {
29//! # data: [i32; N],
30//! # }
31//! trait Bar {
32//! const LEN: usize;
33//!
34//! // Error: cannot perform const operation using `Self`
35//! fn bar(&self) -> Foo<{ Self::LEN }>;
36//! }
37//! ```
38//!
39//! **generic-array** defines a new trait [`ArrayLength`] and a struct [`GenericArray<T, N: ArrayLength>`](GenericArray),
40//! which lets the above be implemented as:
41//!
42//! ```rust
43//! use generic_array::{GenericArray, ArrayLength};
44//!
45//! struct Foo<N: ArrayLength> {
46//! data: GenericArray<i32, N>
47//! }
48//!
49//! trait Bar {
50//! type LEN: ArrayLength;
51//! fn bar(&self) -> Foo<Self::LEN>;
52//! }
53//! ```
54//!
55//! The [`ArrayLength`] trait is implemented for
56//! [unsigned integer types](typenum::Unsigned) from
57//! [typenum]. For example, [`GenericArray<T, U5>`] would work almost like `[T; 5]`:
58//!
59//! ```rust
60//! # use generic_array::{ArrayLength, GenericArray};
61//! use generic_array::typenum::U5;
62//!
63//! struct Foo<T, N: ArrayLength> {
64//! data: GenericArray<T, N>
65//! }
66//!
67//! let foo = Foo::<i32, U5> { data: GenericArray::default() };
68//! ```
69//!
70//! The `arr!` macro is provided to allow easier creation of literal arrays, as shown below:
71//!
72//! ```rust
73//! # use generic_array::arr;
74//! let array = arr![1, 2, 3];
75//! // array: GenericArray<i32, typenum::U3>
76//! assert_eq!(array[2], 3);
77//! ```
78//! ## Feature flags
79//!
80//! ```toml
81//! [dependencies.generic-array]
82//! features = [
83//! "serde", # Serialize/Deserialize implementation
84//! "zeroize", # Zeroize implementation for setting array elements to zero
85//! "const-default", # Compile-time const default value support via trait
86//! "alloc", # Enables From/TryFrom implementations between GenericArray and Vec<T>/Box<[T]>
87//! "faster-hex", # Enables internal use of the `faster-hex` crate for faster hex encoding via SIMD
88//! "compat-0_14" # Enables interoperability with `generic-array` 0.14
89//! ]
90//! ```
91
92#![deny(missing_docs)]
93#![deny(meta_variable_misuse)]
94#![no_std]
95#![cfg_attr(docsrs, feature(doc_cfg))]
96
97pub extern crate typenum;
98
99#[doc(hidden)]
100#[cfg(feature = "alloc")]
101pub extern crate alloc;
102
103mod hex;
104mod impls;
105mod iter;
106
107#[cfg(feature = "alloc")]
108mod impl_alloc;
109
110#[cfg(feature = "const-default")]
111mod impl_const_default;
112
113#[cfg(feature = "serde")]
114mod impl_serde;
115
116#[cfg(feature = "zeroize")]
117mod impl_zeroize;
118
119#[cfg(feature = "compat-0_14")]
120mod impl_compat;
121
122use core::iter::FromIterator;
123use core::marker::PhantomData;
124use core::mem::{ManuallyDrop, MaybeUninit};
125use core::ops::{Deref, DerefMut};
126use core::{mem, ptr, slice};
127use typenum::bit::{B0, B1};
128use typenum::generic_const_mappings::{Const, ToUInt};
129use typenum::uint::{UInt, UTerm, Unsigned};
130
131#[doc(hidden)]
132#[cfg_attr(test, macro_use)]
133pub mod arr;
134
135pub mod functional;
136pub mod sequence;
137
138mod internal;
139use internal::{ArrayConsumer, IntrusiveArrayBuilder, Sealed};
140
141// re-export to allow doc_auto_cfg to handle it
142#[cfg(feature = "internals")]
143pub mod internals {
144 //! Very unsafe internal functionality.
145 //!
146 //! These are used internally for building and consuming generic arrays. When used correctly,
147 //! they can ensure elements are correctly dropped if something panics while using them.
148 //!
149 //! The API of these is not guaranteed to be stable, as they are not intended for general use.
150
151 pub use crate::internal::{ArrayBuilder, ArrayConsumer, IntrusiveArrayBuilder};
152}
153
154use self::functional::*;
155use self::sequence::*;
156
157pub use self::iter::GenericArrayIter;
158
159/// `ArrayLength` is a type-level [`Unsigned`] integer used to
160/// define the number of elements in a [`GenericArray`].
161///
162/// Consider `N: ArrayLength` to be equivalent to `const N: usize`
163///
164/// ```
165/// # use generic_array::{GenericArray, ArrayLength};
166/// fn foo<N: ArrayLength>(arr: GenericArray<i32, N>) -> i32 {
167/// arr.iter().sum()
168/// }
169/// ```
170/// is equivalent to:
171/// ```
172/// fn foo<const N: usize>(arr: [i32; N]) -> i32 {
173/// arr.iter().sum()
174/// }
175/// ```
176///
177/// # Safety
178///
179/// This trait is effectively sealed due to only being allowed on [`Unsigned`] types,
180/// and therefore cannot be implemented in user code.
181///
182/// Furthermore, this is limited to lengths less than or equal to `usize::MAX`.
183/// ```compile_fail
184/// # #![recursion_limit = "256"]
185/// # use generic_array::{GenericArray, ArrayLength};
186/// # use generic_array::typenum::{self, Unsigned};
187/// type Empty = core::convert::Infallible; // Uninhabited ZST, size_of::<Empty>() == 0
188///
189/// // 2^64, greater than usize::MAX on 64-bit systems
190/// type TooBig = typenum::operator_aliases::Shleft<typenum::U1, typenum::U64>;
191///
192/// // Compile Error due to ArrayLength not implemented for TooBig
193/// let _ = GenericArray::<Empty, TooBig>::from_slice(&[]);
194/// ```
195pub unsafe trait ArrayLength: Unsigned + 'static {
196 /// Associated type representing the underlying contiguous memory
197 /// that constitutes an array with the given number of elements.
198 ///
199 /// This is an implementation detail, but is required to be public in cases where certain attributes
200 /// of the inner type of [`GenericArray`] cannot be proven, such as [`Copy`] bounds.
201 ///
202 /// [`Copy`] example:
203 /// ```
204 /// # use generic_array::{GenericArray, ArrayLength};
205 /// struct MyType<N: ArrayLength> {
206 /// data: GenericArray<f32, N>,
207 /// }
208 ///
209 /// impl<N: ArrayLength> Clone for MyType<N> where N::ArrayType<f32>: Copy {
210 /// fn clone(&self) -> Self { MyType { ..*self } }
211 /// }
212 ///
213 /// impl<N: ArrayLength> Copy for MyType<N> where N::ArrayType<f32>: Copy {}
214 /// ```
215 ///
216 /// Alternatively, using the entire `GenericArray<f32, N>` type as the bounds works:
217 /// ```ignore
218 /// where GenericArray<f32, N>: Copy
219 /// ```
220 type ArrayType<T>: Sealed;
221}
222
223unsafe impl ArrayLength for UTerm {
224 #[doc(hidden)]
225 type ArrayType<T> = [T; 0];
226}
227
228/// Implemented for types which can have an associated [`ArrayLength`],
229/// such as [`Const<N>`] for use with const-generics.
230///
231/// ```
232/// use generic_array::{GenericArray, IntoArrayLength, ConstArrayLength, typenum::Const};
233///
234/// fn some_array_interopt<const N: usize>(value: [u32; N]) -> GenericArray<u32, ConstArrayLength<N>>
235/// where
236/// Const<N>: IntoArrayLength,
237/// {
238/// let ga = GenericArray::from(value);
239/// // do stuff
240/// ga
241/// }
242/// ```
243///
244/// This is mostly to simplify the `where` bounds, equivalent to:
245///
246/// ```
247/// use generic_array::{GenericArray, ArrayLength, typenum::{Const, U, ToUInt}};
248///
249/// fn some_array_interopt<const N: usize>(value: [u32; N]) -> GenericArray<u32, U<N>>
250/// where
251/// Const<N>: ToUInt,
252/// U<N>: ArrayLength,
253/// {
254/// let ga = GenericArray::from(value);
255/// // do stuff
256/// ga
257/// }
258/// ```
259pub trait IntoArrayLength {
260 /// The associated `ArrayLength`
261 type ArrayLength: ArrayLength;
262}
263
264impl<const N: usize> IntoArrayLength for Const<N>
265where
266 Const<N>: ToUInt,
267 typenum::U<N>: ArrayLength,
268{
269 type ArrayLength = typenum::U<N>;
270}
271
272impl<N> IntoArrayLength for N
273where
274 N: ArrayLength,
275{
276 type ArrayLength = Self;
277}
278
279/// Associated [`ArrayLength`] for one [`Const<N>`]
280///
281/// See [`IntoArrayLength`] for more information.
282pub type ConstArrayLength<const N: usize> = <Const<N> as IntoArrayLength>::ArrayLength;
283
284/// Internal type used to generate a struct of appropriate size
285#[allow(dead_code)]
286#[repr(C)]
287#[doc(hidden)]
288pub struct GenericArrayImplEven<T, U> {
289 parents: [U; 2],
290 _marker: PhantomData<T>,
291}
292
293/// Internal type used to generate a struct of appropriate size
294#[allow(dead_code)]
295#[repr(C)]
296#[doc(hidden)]
297pub struct GenericArrayImplOdd<T, U> {
298 parents: [U; 2],
299 data: T,
300}
301
302impl<T: Clone, U: Clone> Clone for GenericArrayImplEven<T, U> {
303 #[inline(always)]
304 fn clone(&self) -> GenericArrayImplEven<T, U> {
305 // Clone is never called on the GenericArrayImpl types,
306 // as we use `self.map(clone)` elsewhere. This helps avoid
307 // extra codegen for recursive clones when they are never used.
308 unsafe { core::hint::unreachable_unchecked() }
309 }
310}
311
312impl<T: Clone, U: Clone> Clone for GenericArrayImplOdd<T, U> {
313 #[inline(always)]
314 fn clone(&self) -> GenericArrayImplOdd<T, U> {
315 unsafe { core::hint::unreachable_unchecked() }
316 }
317}
318
319// Even if Clone is never used, they can still be byte-copyable.
320impl<T: Copy, U: Copy> Copy for GenericArrayImplEven<T, U> {}
321impl<T: Copy, U: Copy> Copy for GenericArrayImplOdd<T, U> {}
322
323impl<T, U> Sealed for GenericArrayImplEven<T, U> {}
324impl<T, U> Sealed for GenericArrayImplOdd<T, U> {}
325
326// 1 << (size_of::<usize>() << 3) == usize::MAX + 1
327type MaxArrayLengthP1 = typenum::Shleft<
328 typenum::U1,
329 typenum::Shleft<typenum::U<{ mem::size_of::<usize>() }>, typenum::U3>,
330>;
331
332/// Helper trait to hide the complex bound under a simpler name
333trait IsWithinUsizeBound: typenum::IsLess<MaxArrayLengthP1, Output = typenum::consts::True> {}
334
335impl<N> IsWithinUsizeBound for N where
336 N: typenum::IsLess<MaxArrayLengthP1, Output = typenum::consts::True>
337{
338}
339
340unsafe impl<N: ArrayLength> ArrayLength for UInt<N, B0>
341where
342 Self: IsWithinUsizeBound,
343{
344 #[doc(hidden)]
345 type ArrayType<T> = GenericArrayImplEven<T, N::ArrayType<T>>;
346}
347
348unsafe impl<N: ArrayLength> ArrayLength for UInt<N, B1>
349where
350 Self: IsWithinUsizeBound,
351{
352 #[doc(hidden)]
353 type ArrayType<T> = GenericArrayImplOdd<T, N::ArrayType<T>>;
354}
355
356/// Struct representing a generic array - `GenericArray<T, N>` works like `[T; N]`
357///
358/// For how to implement [`Copy`] on structs using a generic-length `GenericArray` internally, see
359/// the docs for [`ArrayLength::ArrayType`].
360///
361/// # Usage Notes
362///
363/// ### Initialization
364///
365/// Initialization of known-length `GenericArray`s can be done via the [`arr![]`](arr!) macro,
366/// or [`from_array`](GenericArray::from_array)/[`from_slice`](GenericArray::from_slice).
367///
368/// For generic arrays of unknown/generic length, several safe methods are included to initialize
369/// them, such as the [`GenericSequence::generate`] method:
370///
371/// ```rust
372/// use generic_array::{GenericArray, sequence::GenericSequence, typenum, arr};
373///
374/// let evens: GenericArray<i32, typenum::U4> =
375/// GenericArray::generate(|i: usize| i as i32 * 2);
376///
377/// assert_eq!(evens, arr![0, 2, 4, 6]);
378/// ```
379///
380/// Furthermore, [`FromIterator`] and [`try_from_iter`](GenericArray::try_from_iter) exist to construct them
381/// from iterators, but will panic/fail if not given exactly the correct number of elements.
382///
383/// ### Utilities
384///
385/// The [`GenericSequence`], [`FunctionalSequence`], [`Lengthen`], [`Shorten`], [`Split`], and [`Concat`] traits implement
386/// some common operations on generic arrays.
387///
388/// ### Optimizations
389///
390/// Prefer to use the slice iterators like `.iter()`/`.iter_mut()` rather than by-value [`IntoIterator`]/[`GenericArrayIter`] if you can.
391/// Slices optimize better. Using the [`FunctionalSequence`] methods also optimize well.
392///
393/// # How it works
394///
395/// The `typenum` crate uses Rust's type system to define binary integers as nested types,
396/// and allows for operations which can be applied to those type-numbers, such as `Add`, `Sub`, etc.
397///
398/// e.g. `6` would be `UInt<UInt<UInt<UTerm, B1>, B1>, B0>`
399///
400/// `generic-array` uses this nested type to recursively allocate contiguous elements, statically.
401/// The [`ArrayLength`] trait is implemented on `UInt<N, B0>`, `UInt<N, B1>` and `UTerm`,
402/// which correspond to even, odd and zero numeric values, respectively.
403/// Together, these three cover all cases of `Unsigned` integers from `typenum`.
404/// For `UInt<N, B0>` and `UInt<N, B1>`, it peels away the highest binary digit and
405/// builds up a recursive structure that looks almost like a binary tree.
406/// Then, within `GenericArray`, the recursive structure is reinterpreted as a contiguous
407/// chunk of memory and allowing access to it as a slice.
408///
409/// <details>
410/// <summary><strong>Expand for internal structure demonstration</strong></summary>
411///
412/// For example, `GenericArray<T, U6>` more or less expands to (at compile time):
413///
414/// ```ignore
415/// GenericArray {
416/// // 6 = UInt<UInt<UInt<UTerm, B1>, B1>, B0>
417/// data: EvenData {
418/// // 3 = UInt<UInt<UTerm, B1>, B1>
419/// left: OddData {
420/// // 1 = UInt<UTerm, B1>
421/// left: OddData {
422/// left: (), // UTerm
423/// right: (), // UTerm
424/// data: T, // Element 0
425/// },
426/// // 1 = UInt<UTerm, B1>
427/// right: OddData {
428/// left: (), // UTerm
429/// right: (), // UTerm
430/// data: T, // Element 1
431/// },
432/// data: T // Element 2
433/// },
434/// // 3 = UInt<UInt<UTerm, B1>, B1>
435/// right: OddData {
436/// // 1 = UInt<UTerm, B1>
437/// left: OddData {
438/// left: (), // UTerm
439/// right: (), // UTerm
440/// data: T, // Element 3
441/// },
442/// // 1 = UInt<UTerm, B1>
443/// right: OddData {
444/// left: (), // UTerm
445/// right: (), // UTerm
446/// data: T, // Element 4
447/// },
448/// data: T // Element 5
449/// }
450/// }
451/// }
452/// ```
453///
454/// This has the added benefit of only being `log2(N)` deep, which is important for things like `Drop`
455/// to avoid stack overflows, since we can't implement `Drop` manually.
456///
457/// Then, we take the contiguous block of data and cast it to `*const T` or `*mut T` and use it as a slice:
458///
459/// ```ignore
460/// unsafe {
461/// slice::from_raw_parts(
462/// self as *const GenericArray<T, N> as *const T,
463/// <N as Unsigned>::USIZE
464/// )
465/// }
466/// ```
467///
468/// </details>
469#[repr(transparent)]
470pub struct GenericArray<T, N: ArrayLength> {
471 #[allow(dead_code)] // data is never accessed directly
472 data: N::ArrayType<T>,
473}
474
475unsafe impl<T: Send, N: ArrayLength> Send for GenericArray<T, N> {}
476unsafe impl<T: Sync, N: ArrayLength> Sync for GenericArray<T, N> {}
477
478impl<T, N: ArrayLength> Deref for GenericArray<T, N> {
479 type Target = [T];
480
481 #[inline(always)]
482 fn deref(&self) -> &[T] {
483 GenericArray::as_slice(self)
484 }
485}
486
487impl<T, N: ArrayLength> DerefMut for GenericArray<T, N> {
488 #[inline(always)]
489 fn deref_mut(&mut self) -> &mut [T] {
490 GenericArray::as_mut_slice(self)
491 }
492}
493
494impl<'a, T: 'a, N: ArrayLength> IntoIterator for &'a GenericArray<T, N> {
495 type IntoIter = slice::Iter<'a, T>;
496 type Item = &'a T;
497
498 fn into_iter(self: &'a GenericArray<T, N>) -> Self::IntoIter {
499 self.as_slice().iter()
500 }
501}
502
503impl<'a, T: 'a, N: ArrayLength> IntoIterator for &'a mut GenericArray<T, N> {
504 type IntoIter = slice::IterMut<'a, T>;
505 type Item = &'a mut T;
506
507 fn into_iter(self: &'a mut GenericArray<T, N>) -> Self::IntoIter {
508 self.as_mut_slice().iter_mut()
509 }
510}
511
512impl<T, N: ArrayLength> FromIterator<T> for GenericArray<T, N> {
513 /// Create a `GenericArray` from an iterator.
514 ///
515 /// Will panic if the number of elements is not exactly the array length.
516 ///
517 /// See [`GenericArray::try_from_iter]` for a fallible alternative.
518 #[inline]
519 fn from_iter<I>(iter: I) -> GenericArray<T, N>
520 where
521 I: IntoIterator<Item = T>,
522 {
523 match Self::try_from_iter(iter) {
524 Ok(res) => res,
525 Err(_) => from_iter_length_fail(N::USIZE),
526 }
527 }
528}
529
530#[inline(never)]
531#[cold]
532pub(crate) fn from_iter_length_fail(length: usize) -> ! {
533 panic!("GenericArray::from_iter expected {length} items");
534}
535
536unsafe impl<T, N: ArrayLength> GenericSequence<T> for GenericArray<T, N>
537where
538 Self: IntoIterator<Item = T>,
539{
540 type Length = N;
541 type Sequence = Self;
542
543 #[inline(always)]
544 fn generate<F>(mut f: F) -> GenericArray<T, N>
545 where
546 F: FnMut(usize) -> T,
547 {
548 unsafe {
549 let mut array = GenericArray::<T, N>::uninit();
550 let mut builder = IntrusiveArrayBuilder::new(&mut array);
551
552 {
553 let (builder_iter, position) = builder.iter_position();
554
555 builder_iter.enumerate().for_each(|(i, dst)| {
556 dst.write(f(i));
557 *position += 1;
558 });
559 }
560
561 builder.finish();
562 IntrusiveArrayBuilder::array_assume_init(array)
563 }
564 }
565
566 #[inline(always)]
567 fn inverted_zip<B, U, F>(
568 self,
569 lhs: GenericArray<B, Self::Length>,
570 mut f: F,
571 ) -> MappedSequence<GenericArray<B, Self::Length>, B, U>
572 where
573 GenericArray<B, Self::Length>:
574 GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
575 Self: MappedGenericSequence<T, U>,
576 F: FnMut(B, Self::Item) -> U,
577 {
578 unsafe {
579 if mem::needs_drop::<T>() || mem::needs_drop::<B>() {
580 let mut left = ArrayConsumer::new(lhs);
581 let mut right = ArrayConsumer::new(self);
582
583 let (left_array_iter, left_position) = left.iter_position();
584 let (right_array_iter, right_position) = right.iter_position();
585
586 FromIterator::from_iter(left_array_iter.zip(right_array_iter).map(|(l, r)| {
587 let left_value = ptr::read(l);
588 let right_value = ptr::read(r);
589
590 *left_position += 1;
591 *right_position = *left_position;
592
593 f(left_value, right_value)
594 }))
595 } else {
596 // Despite neither needing `Drop`, they may not be `Copy`, so be paranoid
597 // and avoid anything related to drop anyway. Assume it's moved out on each read.
598 let left = ManuallyDrop::new(lhs);
599 let right = ManuallyDrop::new(self);
600
601 // Neither right nor left require `Drop` be called, so choose an iterator that's easily optimized
602 //
603 // Note that because ArrayConsumer checks for `needs_drop` itself, if `f` panics then nothing
604 // would have been done about it anyway. Only the other branch needs `ArrayConsumer`
605 FromIterator::from_iter(left.iter().zip(right.iter()).map(|(l, r)| {
606 f(ptr::read(l), ptr::read(r)) //
607 }))
608 }
609 }
610 }
611
612 #[inline(always)]
613 fn inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U>
614 where
615 Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>,
616 Self: MappedGenericSequence<T, U>,
617 F: FnMut(Lhs::Item, Self::Item) -> U,
618 {
619 unsafe {
620 if mem::needs_drop::<T>() {
621 let mut right = ArrayConsumer::new(self);
622
623 let (right_array_iter, right_position) = right.iter_position();
624
625 FromIterator::from_iter(right_array_iter.zip(lhs).map(|(r, left_value)| {
626 let right_value = ptr::read(r);
627
628 *right_position += 1;
629
630 f(left_value, right_value)
631 }))
632 } else {
633 let right = ManuallyDrop::new(self);
634
635 // Similar logic to `inverted_zip`'s no-drop branch
636 FromIterator::from_iter(right.iter().zip(lhs).map(|(r, left_value)| {
637 f(left_value, ptr::read(r)) //
638 }))
639 }
640 }
641 }
642}
643
644impl<T, U, N: ArrayLength> MappedGenericSequence<T, U> for GenericArray<T, N>
645where
646 GenericArray<U, N>: GenericSequence<U, Length = N>,
647{
648 type Mapped = GenericArray<U, N>;
649}
650
651impl<T, N: ArrayLength> FunctionalSequence<T> for GenericArray<T, N>
652where
653 Self: GenericSequence<T, Item = T, Length = N>,
654{
655 #[inline(always)]
656 fn map<U, F>(self, mut f: F) -> MappedSequence<Self, T, U>
657 where
658 Self: MappedGenericSequence<T, U>,
659 F: FnMut(T) -> U,
660 {
661 unsafe {
662 let mut source = ArrayConsumer::new(self);
663
664 let (array_iter, position) = source.iter_position();
665
666 FromIterator::from_iter(array_iter.map(|src| {
667 let value = ptr::read(src);
668
669 *position += 1;
670
671 f(value)
672 }))
673 }
674 }
675
676 #[inline(always)]
677 fn zip<B, Rhs, U, F>(self, rhs: Rhs, f: F) -> MappedSequence<Self, T, U>
678 where
679 Self: MappedGenericSequence<T, U>,
680 Rhs: MappedGenericSequence<B, U, Mapped = MappedSequence<Self, T, U>>,
681 Rhs: GenericSequence<B, Length = Self::Length>,
682 F: FnMut(T, Rhs::Item) -> U,
683 {
684 rhs.inverted_zip(self, f)
685 }
686
687 #[inline(always)]
688 fn fold<U, F>(self, init: U, mut f: F) -> U
689 where
690 F: FnMut(U, T) -> U,
691 {
692 unsafe {
693 let mut source = ArrayConsumer::new(self);
694
695 let (array_iter, position) = source.iter_position();
696
697 array_iter.fold(init, |acc, src| {
698 let value = ptr::read(src);
699 *position += 1;
700 f(acc, value)
701 })
702 }
703 }
704}
705
706impl<T, N: ArrayLength> GenericArray<T, N> {
707 /// Returns the number of elements in the array.
708 ///
709 /// Equivalent to [`<N as Unsigned>::USIZE`](typenum::Unsigned) where `N` is the array length.
710 ///
711 /// Useful for when only a type alias is available.
712 pub const fn len() -> usize {
713 N::USIZE
714 }
715
716 /// Extracts a slice containing the entire array.
717 #[inline(always)]
718 pub const fn as_slice(&self) -> &[T] {
719 unsafe { slice::from_raw_parts(self as *const Self as *const T, N::USIZE) }
720 }
721
722 /// Extracts a mutable slice containing the entire array.
723 ///
724 /// This method is `const` since Rust 1.83.0, but non-`const` before.
725 #[rustversion::attr(since(1.83), const)]
726 #[inline(always)]
727 pub fn as_mut_slice(&mut self) -> &mut [T] {
728 unsafe { slice::from_raw_parts_mut(self as *mut Self as *mut T, N::USIZE) }
729 }
730
731 /// Converts a slice to a generic array reference with inferred length.
732 ///
733 /// # Panics
734 ///
735 /// Panics if the slice is not equal to the length of the array.
736 ///
737 /// Consider [`TryFrom`]/[`TryInto`] for a fallible conversion,
738 /// or [`try_from_slice`](GenericArray::try_from_slice) for use in const expressions.
739 #[inline(always)]
740 pub const fn from_slice(slice: &[T]) -> &GenericArray<T, N> {
741 if slice.len() != N::USIZE {
742 panic!("slice.len() != N in GenericArray::from_slice");
743 }
744
745 unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) }
746 }
747
748 /// Converts a slice to a generic array reference with inferred length.
749 ///
750 /// This is a fallible alternative to [`from_slice`](GenericArray::from_slice), and can be used in const expressions,
751 /// but [`TryFrom`]/[`TryInto`] are also available to do the same thing.
752 #[inline(always)]
753 pub const fn try_from_slice(slice: &[T]) -> Result<&GenericArray<T, N>, LengthError> {
754 if slice.len() != N::USIZE {
755 return Err(LengthError);
756 }
757
758 Ok(unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) })
759 }
760
761 /// Converts a mutable slice to a mutable generic array reference with inferred length.
762 ///
763 /// # Panics
764 ///
765 /// Panics if the slice is not equal to the length of the array.
766 ///
767 /// Consider [`TryFrom`]/[`TryInto`] for a fallible conversion.
768 ///
769 /// This method is `const` since Rust 1.83.0, but non-`const` before.
770 #[rustversion::attr(since(1.83), const)]
771 #[inline(always)]
772 pub fn from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N> {
773 assert!(
774 slice.len() == N::USIZE,
775 "slice.len() != N in GenericArray::from_mut_slice"
776 );
777
778 unsafe { &mut *(slice.as_mut_ptr() as *mut GenericArray<T, N>) }
779 }
780
781 /// Converts a mutable slice to a mutable generic array reference with inferred length.
782 ///
783 /// This is a fallible alternative to [`from_mut_slice`](GenericArray::from_mut_slice),
784 /// and is equivalent to the [`TryFrom`] implementation with the added benefit of being `const`.
785 ///
786 /// This method is `const` since Rust 1.83.0, but non-`const` before.
787 #[rustversion::attr(since(1.83), const)]
788 #[inline(always)]
789 pub fn try_from_mut_slice(slice: &mut [T]) -> Result<&mut GenericArray<T, N>, LengthError> {
790 match slice.len() == N::USIZE {
791 true => Ok(GenericArray::from_mut_slice(slice)),
792 false => Err(LengthError),
793 }
794 }
795
796 /// Converts a slice of `T` elements into a slice of `GenericArray<T, N>` chunks.
797 ///
798 /// Any remaining elements that do not fill the array will be returned as a second slice.
799 ///
800 /// # Panics
801 ///
802 /// Panics if `N` is `U0` _AND_ the input slice is not empty.
803 pub const fn chunks_from_slice(slice: &[T]) -> (&[GenericArray<T, N>], &[T]) {
804 if N::USIZE == 0 {
805 assert!(slice.is_empty(), "GenericArray length N must be non-zero");
806 return (&[], &[]);
807 }
808
809 // NOTE: Using `slice.split_at` adds an unnecessary assert
810 let num_chunks = slice.len() / N::USIZE; // integer division
811 let num_in_chunks = num_chunks * N::USIZE;
812 let num_remainder = slice.len() - num_in_chunks;
813
814 unsafe {
815 (
816 slice::from_raw_parts(slice.as_ptr() as *const GenericArray<T, N>, num_chunks),
817 slice::from_raw_parts(slice.as_ptr().add(num_in_chunks), num_remainder),
818 )
819 }
820 }
821
822 /// Converts a mutable slice of `T` elements into a mutable slice `GenericArray<T, N>` chunks.
823 ///
824 /// Any remaining elements that do not fill the array will be returned as a second slice.
825 ///
826 /// # Panics
827 ///
828 /// Panics if `N` is `U0` _AND_ the input slice is not empty.
829 ///
830 /// This method is `const` since Rust 1.83.0, but non-`const` before.
831 #[rustversion::attr(since(1.83), const)]
832 pub fn chunks_from_slice_mut(slice: &mut [T]) -> (&mut [GenericArray<T, N>], &mut [T]) {
833 if N::USIZE == 0 {
834 assert!(slice.is_empty(), "GenericArray length N must be non-zero");
835 return (&mut [], &mut []);
836 }
837
838 // NOTE: Using `slice.split_at_mut` adds an unnecessary assert
839 let num_chunks = slice.len() / N::USIZE; // integer division
840 let num_in_chunks = num_chunks * N::USIZE;
841 let num_remainder = slice.len() - num_in_chunks;
842
843 unsafe {
844 (
845 slice::from_raw_parts_mut(
846 slice.as_mut_ptr() as *mut GenericArray<T, N>,
847 num_chunks,
848 ),
849 slice::from_raw_parts_mut(slice.as_mut_ptr().add(num_in_chunks), num_remainder),
850 )
851 }
852 }
853
854 /// Convert a slice of `GenericArray<T, N>` into a slice of `T`, effectively flattening the arrays.
855 #[inline(always)]
856 pub const fn slice_from_chunks(slice: &[GenericArray<T, N>]) -> &[T] {
857 unsafe { slice::from_raw_parts(slice.as_ptr() as *const T, slice.len() * N::USIZE) }
858 }
859
860 /// Convert a slice of `GenericArray<T, N>` into a slice of `T`, effectively flattening the arrays.
861 ///
862 /// This method is `const` since Rust 1.83.0, but non-`const` before.
863 #[rustversion::attr(since(1.83), const)]
864 #[inline(always)]
865 pub fn slice_from_chunks_mut(slice: &mut [GenericArray<T, N>]) -> &mut [T] {
866 unsafe { slice::from_raw_parts_mut(slice.as_mut_ptr() as *mut T, slice.len() * N::USIZE) }
867 }
868
869 /// Convert a native array into `GenericArray` of the same length and type.
870 ///
871 /// This is the `const` equivalent of using the standard [`From`]/[`Into`] traits methods.
872 #[inline(always)]
873 pub const fn from_array<const U: usize>(value: [T; U]) -> Self
874 where
875 Const<U>: IntoArrayLength<ArrayLength = N>,
876 {
877 unsafe { crate::const_transmute(value) }
878 }
879
880 /// Convert the `GenericArray` into a native array of the same length and type.
881 ///
882 /// This is the `const` equivalent of using the standard [`From`]/[`Into`] traits methods.
883 #[inline(always)]
884 pub const fn into_array<const U: usize>(self) -> [T; U]
885 where
886 Const<U>: IntoArrayLength<ArrayLength = N>,
887 {
888 unsafe { crate::const_transmute(self) }
889 }
890
891 /// Convert a slice of native arrays into a slice of `GenericArray`s.
892 #[inline(always)]
893 pub const fn from_chunks<const U: usize>(chunks: &[[T; U]]) -> &[GenericArray<T, N>]
894 where
895 Const<U>: IntoArrayLength<ArrayLength = N>,
896 {
897 unsafe { mem::transmute(chunks) }
898 }
899
900 /// Convert a mutable slice of native arrays into a mutable slice of `GenericArray`s.
901 ///
902 /// This method is `const` since Rust 1.83.0, but non-`const` before.
903 #[rustversion::attr(since(1.83), const)]
904 #[inline(always)]
905 pub fn from_chunks_mut<const U: usize>(chunks: &mut [[T; U]]) -> &mut [GenericArray<T, N>]
906 where
907 Const<U>: IntoArrayLength<ArrayLength = N>,
908 {
909 unsafe { mem::transmute(chunks) }
910 }
911
912 /// Converts a slice `GenericArray<T, N>` into a slice of `[T; N]`
913 #[inline(always)]
914 pub const fn into_chunks<const U: usize>(chunks: &[GenericArray<T, N>]) -> &[[T; U]]
915 where
916 Const<U>: IntoArrayLength<ArrayLength = N>,
917 {
918 unsafe { mem::transmute(chunks) }
919 }
920
921 /// Converts a mutable slice `GenericArray<T, N>` into a mutable slice of `[T; N]`
922 ///
923 /// This method is `const` since Rust 1.83.0, but non-`const` before.
924 #[rustversion::attr(since(1.83), const)]
925 #[inline(always)]
926 pub fn into_chunks_mut<const U: usize>(chunks: &mut [GenericArray<T, N>]) -> &mut [[T; U]]
927 where
928 Const<U>: IntoArrayLength<ArrayLength = N>,
929 {
930 unsafe { mem::transmute(chunks) }
931 }
932}
933
934impl<T, N: ArrayLength> GenericArray<T, N> {
935 /// Create a new array of `MaybeUninit<T>` items, in an uninitialized state.
936 ///
937 /// See [`GenericArray::assume_init`] for a full example.
938 #[inline(always)]
939 #[allow(clippy::uninit_assumed_init)]
940 pub const fn uninit() -> GenericArray<MaybeUninit<T>, N> {
941 unsafe {
942 // SAFETY: An uninitialized `[MaybeUninit<_>; N]` is valid, same as regular array
943 MaybeUninit::<GenericArray<MaybeUninit<T>, N>>::uninit().assume_init()
944 }
945 }
946
947 /// Extracts the values from a generic array of `MaybeUninit` containers.
948 ///
949 /// # Safety
950 ///
951 /// It is up to the caller to guarantee that all elements of the array are in an initialized state.
952 ///
953 /// # Example
954 ///
955 /// ```
956 /// # use core::mem::MaybeUninit;
957 /// # use generic_array::{GenericArray, typenum::U3, arr};
958 /// let mut array: GenericArray<MaybeUninit<i32>, U3> = GenericArray::uninit();
959 /// array[0].write(0);
960 /// array[1].write(1);
961 /// array[2].write(2);
962 ///
963 /// // SAFETY: Now safe as we initialised all elements
964 /// let array = unsafe {
965 /// GenericArray::assume_init(array)
966 /// };
967 ///
968 /// assert_eq!(array, arr![0, 1, 2]);
969 /// ```
970 #[inline(always)]
971 pub const unsafe fn assume_init(array: GenericArray<MaybeUninit<T>, N>) -> Self {
972 const_transmute::<_, MaybeUninit<GenericArray<T, N>>>(array).assume_init()
973 }
974}
975
976/// Error for [`TryFrom`] and [`try_from_iter`](GenericArray::try_from_iter)
977#[derive(Debug, Clone, Copy)]
978pub struct LengthError;
979
980#[rustversion::since(1.81)]
981impl core::error::Error for LengthError {}
982
983impl core::fmt::Display for LengthError {
984 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
985 f.write_str("LengthError: Slice or iterator does not match GenericArray length")
986 }
987}
988
989impl<'a, T, N: ArrayLength> TryFrom<&'a [T]> for &'a GenericArray<T, N> {
990 type Error = LengthError;
991
992 #[inline(always)]
993 fn try_from(slice: &'a [T]) -> Result<Self, Self::Error> {
994 GenericArray::try_from_slice(slice)
995 }
996}
997
998impl<'a, T, N: ArrayLength> TryFrom<&'a mut [T]> for &'a mut GenericArray<T, N> {
999 type Error = LengthError;
1000
1001 #[inline(always)]
1002 fn try_from(slice: &'a mut [T]) -> Result<Self, Self::Error> {
1003 GenericArray::try_from_mut_slice(slice)
1004 }
1005}
1006
1007impl<T, N: ArrayLength> GenericArray<T, N> {
1008 /// Fallible equivalent of [`FromIterator::from_iter`]
1009 ///
1010 /// Given iterator must yield exactly `N` elements or an error will be returned. Using [`.take(N)`](Iterator::take)
1011 /// with an iterator longer than the array may be helpful.
1012 #[inline]
1013 pub fn try_from_iter<I>(iter: I) -> Result<Self, LengthError>
1014 where
1015 I: IntoIterator<Item = T>,
1016 {
1017 let mut iter = iter.into_iter();
1018
1019 // pre-checks
1020 match iter.size_hint() {
1021 // if the lower bound is greater than N, array will overflow
1022 (n, _) if n > N::USIZE => return Err(LengthError),
1023 // if the upper bound is smaller than N, array cannot be filled
1024 (_, Some(n)) if n < N::USIZE => return Err(LengthError),
1025 _ => {}
1026 }
1027
1028 unsafe {
1029 let mut array = GenericArray::uninit();
1030 let mut builder = IntrusiveArrayBuilder::new(&mut array);
1031
1032 builder.extend(&mut iter);
1033
1034 if !builder.is_full() || iter.next().is_some() {
1035 return Err(LengthError);
1036 }
1037
1038 Ok({
1039 builder.finish();
1040 IntrusiveArrayBuilder::array_assume_init(array)
1041 })
1042 }
1043 }
1044}
1045
1046/// A const reimplementation of the [`transmute`](core::mem::transmute) function,
1047/// avoiding problems when the compiler can't prove equal sizes.
1048///
1049/// # Safety
1050/// Treat this the same as [`transmute`](core::mem::transmute), or (preferably) don't use it at all.
1051#[inline(always)]
1052#[cfg_attr(not(feature = "internals"), doc(hidden))]
1053pub const unsafe fn const_transmute<A, B>(a: A) -> B {
1054 if mem::size_of::<A>() != mem::size_of::<B>() {
1055 panic!("Size mismatch for generic_array::const_transmute");
1056 }
1057
1058 #[repr(C)]
1059 union Union<A, B> {
1060 a: ManuallyDrop<A>,
1061 b: ManuallyDrop<B>,
1062 }
1063
1064 let a = ManuallyDrop::new(a);
1065 ManuallyDrop::into_inner(Union { a }.b)
1066}
1067
1068#[cfg(test)]
1069mod test {
1070 // Compile with:
1071 // cargo rustc --lib --profile test --release --
1072 // -C target-cpu=native -C opt-level=3 --emit asm
1073 // and view the assembly to make sure test_assembly generates
1074 // SIMD instructions instead of a naive loop.
1075
1076 #[inline(never)]
1077 pub fn black_box<T>(val: T) -> T {
1078 use core::{mem, ptr};
1079
1080 let ret = unsafe { ptr::read_volatile(&val) };
1081 mem::forget(val);
1082 ret
1083 }
1084
1085 #[test]
1086 fn test_assembly() {
1087 use crate::functional::*;
1088
1089 let a = black_box(arr![1, 3, 5, 7]);
1090 let b = black_box(arr![2, 4, 6, 8]);
1091
1092 let c = (&a).zip(b, |l, r| l + r);
1093
1094 let d = a.fold(0, |a, x| a + x);
1095
1096 assert_eq!(c, arr![3, 7, 11, 15]);
1097
1098 assert_eq!(d, 16);
1099 }
1100}